
Concept explainers
Fermat's most notorious theorem, described in the section opener on page 782, baffled the greatest minds for more than three centuries. In 1994. after ten years of work, Princeton University's Andrew Wiles proved Fermat’s Last Theorem, People magazine put him on its list of “the 25 most intriguing people of the year,’’ the Gap asked him to model jeans, and Barbara Walters chased him for an interview. “Who's Barbara Walters?” asked the bookish Wiles, who had somehow gone through life without a television.
Using the 1993 PBS documentary “Solving Fermat: Andrew Wiles” or information about Andrew Wiles on the Internet, research and present a group seminar on what Wiles did to prove Fermat’s Last Theorem, problems along the way, and the role of mathematical induction in the proof.

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
EBK PRECALCULUS
- Find the indefinite integral by making a change of variables. (Remember the constant of integration.) √(x+4) 4)√6-x dxarrow_forwarda -> f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem) Muslim_mathsarrow_forwardUse Green's Theorem to evaluate F. dr, where F = (√+4y, 2x + √√) and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to (0,0).arrow_forward
- Evaluate F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line π 1 1 segment starting at the point (8, ' and ending at the point (3, 2 3'6arrow_forwardCan you help me find the result of an integral + a 炉[メをメ +炉なarrow_forward2 a Can you help me find the result of an integral a 아 x² dxarrow_forward
- Please help me with this question as I want to know how can I perform the partial fraction decompostion on this alebgric equation to find the time-domain of y(t)arrow_forwardPlease help me with this question as I want to know how can I perform the partial fraction on this alebgric equation to find the time-domain of y(t)arrow_forwardEvaluate F³ - dr where ♬ = (4z, -4y, x), and C' is given by (t) = (sin(t), t, cos(t)), 0≤t≤ñ .arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
