Complex Form of the Fourier Series. a. Using the Euler formula e i θ = cos θ + i sin θ , i = − 1 , prove that cos n x = e i n x + e − i n x 2 and sin n x = e i n x − e − i n x 2 i . b. Show that the Fourier series f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ { a n cos n x + b n sin n x } = c 0 + ∑ n = 1 ∞ { c n e i n x + c − n e − i n x } , where c 0 = a 0 2 , c n = a n − i b n 2 , c − n = a n + i b n 2 . c. Finally, use the results of part (b) to show that f ( x ) ∼ ∑ n = − ∞ ∞ c n e i n x , − π < x < π where c n = 1 2 π ∫ − π π f ( x ) e − i n x d x .
Complex Form of the Fourier Series. a. Using the Euler formula e i θ = cos θ + i sin θ , i = − 1 , prove that cos n x = e i n x + e − i n x 2 and sin n x = e i n x − e − i n x 2 i . b. Show that the Fourier series f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ { a n cos n x + b n sin n x } = c 0 + ∑ n = 1 ∞ { c n e i n x + c − n e − i n x } , where c 0 = a 0 2 , c n = a n − i b n 2 , c − n = a n + i b n 2 . c. Finally, use the results of part (b) to show that f ( x ) ∼ ∑ n = − ∞ ∞ c n e i n x , − π < x < π where c n = 1 2 π ∫ − π π f ( x ) e − i n x d x .
Solution Summary: The author explains how the functions mathrmcosnx=einx+
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.