
Bundle: Elementary Technical Mathematics, Loose-leaf Version, 12th + WebAssign Printed Access Card, Single-Term
12th Edition
ISBN: 9781337890199
Author: Dale Ewen
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.3, Problem 10E
Factor each trinomial completely:
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2
An engineer is designing a pipeline which is supposed to connect two points P and S. The engineer decides
to do it in three sections. The first section runs from point P to point Q, and costs $48 per mile to lay, the
second section runs from point Q to point R and costs $54 per mile, the third runs from point R to point S
and costs $44 per mile. Looking at the diagram below, you see that if you know the lengths marked x and y,
then you know the positions of Q and R. Find the values of x and y which minimize the cost of the pipeline.
Please show your answers to 4 decimal places.
2 Miles
x =
1 Mile
R
10 miles
miles
y =
miles
help on this, results given
Chapter 10 Solutions
Bundle: Elementary Technical Mathematics, Loose-leaf Version, 12th + WebAssign Printed Access Card, Single-Term
Ch. 10.1 - Factor: 4a+4Ch. 10.1 - Factor: 3x6Ch. 10.1 - Factor: bx+byCh. 10.1 - Factor: 918yCh. 10.1 - Factor: 15b20Ch. 10.1 - Factor: 12ab+30acCh. 10.1 - Factor: x27xCh. 10.1 - Factor: 3x26xCh. 10.1 - Factor: a24aCh. 10.1 - Factor: 7xy21y
Ch. 10.1 - Factor: 4n28nCh. 10.1 - Factor: 10x2+5xCh. 10.1 - Factor: 10x2+25xCh. 10.1 - Factor: y28yCh. 10.1 - Factor: 3r26rCh. 10.1 - Factor: x3+13x2+25xCh. 10.1 - Factor: 4x4+8x3+12x2Ch. 10.1 - Factor: 9x415x218xCh. 10.1 - Factor: 9a29ax2Ch. 10.1 - Factor: aa3Ch. 10.1 - Factor: 10x+10y10zCh. 10.1 - Factor: 2x22xCh. 10.1 - Factor: 3y6Ch. 10.1 - Factor: y3y2Ch. 10.1 - Factor: 14xy7x2y2Ch. 10.1 - Factor: 25a225b2Ch. 10.1 - Factor: 12x2m7mCh. 10.1 - Factor: 90r210R2Ch. 10.1 - Factor: 60ax12aCh. 10.1 - Factor: 2x2100x3Ch. 10.1 - Factor: 52m2n213mnCh. 10.1 - Factor: 40x8x3+4x4Ch. 10.1 - Factor: 52m214m+2Ch. 10.1 - Factor: 27x354xCh. 10.1 - Factor: 36y218y3+54y4Ch. 10.1 - Factor: 20y310y2+5yCh. 10.1 - Factor: 6m612m2+3mCh. 10.1 - Factor: 16x332x216xCh. 10.1 - Factor: 4x2y36x2y410x2y5Ch. 10.1 - Factor: 18x3y30x4y+48xyCh. 10.1 - Factor: 3a2b2c2+27a3b3c381abcCh. 10.1 - Factor: 15x2yz420x3y2z2+25x2y3z2Ch. 10.1 - Factor: 4x3z48x2y2z3+12xyz2Ch. 10.1 - Factor: 18a2b2c2+24ab2c230a2c2Ch. 10.2 - Find each product mentally: (x+5)(x+2)Ch. 10.2 - Find each product mentally: (x+3)(2x+7)Ch. 10.2 - Find each product mentally: (2x+3)(3x+4)Ch. 10.2 - Find each product mentally: (x+3)(x+18)Ch. 10.2 - Find each product mentally: (x5)(x6)Ch. 10.2 - Find each product mentally: (x9)(x8)Ch. 10.2 - Find each product mentally: (x12)(x2)Ch. 10.2 - Find each product mentally: (x9)(x4)Ch. 10.2 - Find each product mentally: (x+8)(2x+3)Ch. 10.2 - Find each product mentally: (3x7)(2x5)Ch. 10.2 - Find each product mentally: (x+6)(x2)Ch. 10.2 - Find each product mentally: (x7)(x3)Ch. 10.2 - Find each product mentally: (x9)(x10)Ch. 10.2 - Find each product mentally: (x9)(x+10)Ch. 10.2 - Find each product mentally: (x12)(x+6)Ch. 10.2 - Find each product mentally: (2x+7)(4x5)Ch. 10.2 - Find each product mentally: (2x7)(4x+5)Ch. 10.2 - Prob. 18ECh. 10.2 - Find each product mentally: (2x+5)(4x7)Ch. 10.2 - Find each product mentally: (6x+5)(5x1)Ch. 10.2 - Find each product mentally: (7x+3)(2x+5)Ch. 10.2 - Find each product mentally: (5x7)(2x+1)Ch. 10.2 - Find each product mentally: (x9)(3x+8)Ch. 10.2 - Find each product mentally: (x8)(2x+9)Ch. 10.2 - Find each product mentally: (6x+5)(x+7)Ch. 10.2 - Find each product mentally: (16x+3)(x1)Ch. 10.2 - Find each product mentally: (13x4)(13x4)Ch. 10.2 - Find each product mentally: (12x+1)(12x+5)Ch. 10.2 - Find each product mentally: (10x+7)(12x3)Ch. 10.2 - Find each product mentally: (10x7)(12x+3)Ch. 10.2 - Find each product mentally: (10x7)(10x3)Ch. 10.2 - Find each product mentally: (10x+7)(10x+3)Ch. 10.2 - Find each product mentally: (2x3)(2x5)Ch. 10.2 - Find each product mentally: (2x+3)(2x+5)Ch. 10.2 - Find each product mentally: (2x3)(2x+5)Ch. 10.2 - Find each product mentally: (2x+3)(2x5)Ch. 10.2 - Find each product mentally: (3x8)(2x+7)Ch. 10.2 - Prob. 38ECh. 10.2 - Find each product mentally: (3x+8)(2x+7)Ch. 10.2 - Find each product mentally: (3x8)(2x7)Ch. 10.2 - Find each product mentally: (8x5)(2x+3)Ch. 10.2 - Find each product mentally: (x7)(x+5)Ch. 10.2 - Find each product mentally: (y7)(2y+3)Ch. 10.2 - Find each product mentally: (m9)(m+2)Ch. 10.2 - Find each product mentally: (3n6y)(2n+5y)Ch. 10.2 - Find each product mentally: (6ab)(2a+3b)Ch. 10.2 - Find each product mentally: (4xy)(2x+7y)Ch. 10.2 - Find each product mentally: (8x12)(2x+3)Ch. 10.2 - Find each product mentally: (12x8)(14x6)Ch. 10.2 - Find each product mentally: (23x6)(13x+9)Ch. 10.3 - Factor each trinomial completely: x2+6x+8Ch. 10.3 - Factor each trinomial completely: x2+8x+15Ch. 10.3 - Factor each trinomial completely: y2+9y+20Ch. 10.3 - Factor each trinomial completely: 2w2+20w+32Ch. 10.3 - Factor each trinomial completely: 3r2+30r+75Ch. 10.3 - Factor each trinomial completely: a2+14a+24Ch. 10.3 - Factor each trinomial completely: b2+11b+30Ch. 10.3 - Factor each trinomial completely: c2+21c+54Ch. 10.3 - Factor each trinomial completely: x2+17x+72Ch. 10.3 - Factor each trinomial completely: y2+18y+81Ch. 10.3 - Factor each trinomial completely: 5a2+35a+60Ch. 10.3 - Factor each trinomial completely: r2+12r+27Ch. 10.3 - Factor each trinomial completely: x27x+12Ch. 10.3 - Factor each trinomial completely: y26y+9Ch. 10.3 - Factor each trinomial completely: 2a218a+28Ch. 10.3 - Factor each trinomial completely: c29c+18Ch. 10.3 - Factor each trinomial completely: 3x230x+63Ch. 10.3 - Factor each trinomial completely: r212r+35Ch. 10.3 - Factor each trinomial completely: w213w+42Ch. 10.3 - Factor each trinomial completely: x214x+49Ch. 10.3 - Factor each trinomial completely: x219x+90Ch. 10.3 - Factor each trinomial completely: 4x284x+80Ch. 10.3 - Factor each trinomial completely: t212t+20Ch. 10.3 - Factor each trinomial completely: b215b+54Ch. 10.3 - Factor each trinomial completely: x2+2x8Ch. 10.3 - Factor each trinomial completely: x22x15Ch. 10.3 - Factor each trinomial completely: y2+y20Ch. 10.3 - Prob. 28ECh. 10.3 - Factor each trinomial completely: a2+5a24Ch. 10.3 - Factor each trinomial completely: b2+b30Ch. 10.3 - Factor each trinomial completely: c215c54Ch. 10.3 - Factor each trinomial completely: b26b72Ch. 10.3 - Factor each trinomial completely: 3x23x36Ch. 10.3 - Factor each trinomial completely: a2+5a14Ch. 10.3 - Factor each trinomial completely: c2+3c18Ch. 10.3 - Factor each trinomial completely: x24x21Ch. 10.3 - Factor each trinomial completely: y2+17y+42Ch. 10.3 - Factor each trinomial completely: m218m+72Ch. 10.3 - Factor each trinomial completely: r22r35Ch. 10.3 - Factor each trinomial completely: x2+11x42Ch. 10.3 - Factor each trinomial completely: m222m+40Ch. 10.3 - Factor each trinomial completely: y2+17y+70Ch. 10.3 - Factor each trinomial completely: x29x90Ch. 10.3 - Factor each trinomial completely: x28x+15Ch. 10.3 - Factor each trinomial completely: a2+27a+92Ch. 10.3 - Factor each trinomial completely: x2+17x110Ch. 10.3 - Factor each trinomial completely: 2a212a110Ch. 10.3 - Factor each trinomial completely: y214y+40Ch. 10.3 - Factor each trinomial completely: a2+29a+100Ch. 10.3 - Factor each trinomial completely: y2+14y120Ch. 10.3 - Factor each trinomial completely: y214y95Ch. 10.3 - Factor each trinomial completely: b2+20b+36Ch. 10.3 - Factor each trinomial completely: y218y+32Ch. 10.3 - Factor each trinomial completely: x28x128Ch. 10.3 - Factor each trinomial completely: 7x2+7x14Ch. 10.3 - Factor each trinomial completely: 2x26x36Ch. 10.3 - Factor each trinomial completely: 6x2+12x6Ch. 10.3 - Factor each trinomial completely: 4x2+16x+16Ch. 10.3 - Factor each trinomial completely: y212y+35Ch. 10.3 - Factor each trinomial completely: a2+16a+63Ch. 10.3 - Factor each trinomial completely: a2+2a63Ch. 10.3 - Factor each trinomial completely: y2y42Ch. 10.3 - Factor each trinomial completely: x2+18x+56Ch. 10.3 - Factor each trinomial completely: x2+11x26Ch. 10.3 - Factor each trinomial completely: 2y236y+90Ch. 10.3 - Factor each trinomial completely: ax2+2ax+aCh. 10.3 - Factor each trinomial completely: 3xy218xy+27xCh. 10.3 - Factor each trinomial completely: x3x2156xCh. 10.3 - Factor each trinomial completely: x2+30x+225Ch. 10.3 - Factor each trinomial completely: x22x360Ch. 10.3 - Factor each trinomial completely: x226x+153Ch. 10.3 - Factor each trinomial completely: x2+8x384Ch. 10.3 - Factor each trinomial completely: x2+28x+192Ch. 10.3 - Factor each trinomial completely: x2+3x154Ch. 10.3 - Factor each trinomial completely: x2+14x176Ch. 10.3 - Factor each trinomial completely: x259x+798Ch. 10.3 - Factor each trinomial completely: 2a2b+4ab48bCh. 10.3 - Factor each trinomial completely: ax215ax+44aCh. 10.3 - Factor each trinomial completely: y2y72Ch. 10.3 - Factor each trinomial completely: x2+19x+60Ch. 10.4 - Find each product: (x+3)(x3)Ch. 10.4 - Find each product: (x+3)2Ch. 10.4 - Find each product: (a+5)(a5)Ch. 10.4 - Find each product: (y2+9)(y29)Ch. 10.4 - Find each product: (2b+11)(2b11)Ch. 10.4 - Find each product: (x6)2Ch. 10.4 - Find each product: (100+3)(1003)Ch. 10.4 - Find each product: (90+2)(902)Ch. 10.4 - Find each product: (3y2+14)(3y214)Ch. 10.4 - Find each product: (y+8)2Ch. 10.4 - Find each product: (r12)2Ch. 10.4 - Find each product: (t+10)2Ch. 10.4 - Find each product: (4y+5)(4y5)Ch. 10.4 - Find each product: (200+5)(2005)Ch. 10.4 - Find each product: (xy4)2Ch. 10.4 - Find each product: (x2+y)(x2y)Ch. 10.4 - Find each product: (ab+d)2Ch. 10.4 - Find each product: (ab+c)(abc)Ch. 10.4 - Find each product: (z11)2Ch. 10.4 - Find each product: (x3+8)(x38)Ch. 10.4 - Find each product: (st7)2Ch. 10.4 - Find each product: (w+14)(w14)Ch. 10.4 - Find each product: (x+y2)(xy2)Ch. 10.4 - Find each product: (1x)2Ch. 10.4 - Find each product: (x+5)2Ch. 10.4 - Find each product: (x6)2Ch. 10.4 - Find each product: (x+7)(x7)Ch. 10.4 - Find each product: (y12)(y+12)Ch. 10.4 - Find each product: (x3)2Ch. 10.4 - Find each product: (x+4)2Ch. 10.4 - Find each product: (ab+2)(ab2)Ch. 10.4 - Find each product: (m3)(m+3)Ch. 10.4 - Find each product: (x2+2)(x22)Ch. 10.4 - Find each product: (m+15)(m15)Ch. 10.4 - Find each product: (r15)2Ch. 10.4 - Find each product: (t+7a)2Ch. 10.4 - Find each product: (y35)2Ch. 10.4 - Find each product: (4x2)2Ch. 10.4 - Find each product: (10x)(10+x)Ch. 10.4 - Find each product: (ay23)(ay2+3)Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Prob. 8ECh. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.6 - Factor completely: 5x22812Ch. 10.6 - Factor completely: 4x24x3Ch. 10.6 - Factor completely: 10x229x+21Ch. 10.6 - Factor completely: 4x2+4x+1Ch. 10.6 - Factor completely: 12x228x+15Ch. 10.6 - Factor completely: 9x236x+32Ch. 10.6 - Factor completely: 8x2+26x45Ch. 10.6 - Factor completely: 4x2+15x4Ch. 10.6 - Factor completely: 16x211x5Ch. 10.6 - Factor completely: 6x2+3x3Ch. 10.6 - Factor completely: 12x216x16Ch. 10.6 - Factor completely: 10x235x+15Ch. 10.6 - Factor completely: 15y2y6Ch. 10.6 - Factor completely: 6y2+y2Ch. 10.6 - Factor completely: 8m210m3Ch. 10.6 - Factor completely: 2m27m30Ch. 10.6 - Factor completely: 35a22a1Ch. 10.6 - Factor completely: 12a228a+15Ch. 10.6 - Factor completely: 16y28y+1Ch. 10.6 - Factor completely: 25y2+20y+4Ch. 10.6 - Factor completely: 3x2+20x63Ch. 10.6 - Factor completely: 4x2+7x15Ch. 10.6 - Factor completely: 12b2+5b2Ch. 10.6 - Factor completely: 10b27b12Ch. 10.6 - Factor completely: 15y214y8Ch. 10.6 - Factor completely: 5y2+11y+2Ch. 10.6 - Factor completely: 90+17c3c2Ch. 10.6 - Prob. 28ECh. 10.6 - Factor completely: 6x213x+5Ch. 10.6 - Factor completely: 56229x+3Ch. 10.6 - Factor completely: 2y4+9y235Ch. 10.6 - Factor completely: 2y2+7y99Ch. 10.6 - Factor completely: 4b2+52b+169Ch. 10.6 - Factor completely: 6x219x+15Ch. 10.6 - Factor completely: 14x251x+40Ch. 10.6 - Factor completely: 42x413x240Ch. 10.6 - Factor completely: 28x3+140x2+175xCh. 10.6 - Factor completely: 24x354x221xCh. 10.6 - Factor completely: 10ab215ab175aCh. 10.6 - Factor completely: 40bx272bx70bCh. 10 - Prob. 1RCh. 10 - Find each product mentally: (x6)(x+6)Ch. 10 - Find each product mentally: (y+7)(y4)Ch. 10 - Find each product mentally: (2x+5)(2x9)Ch. 10 - Find each product mentally: (x+8)(x3)Ch. 10 - Find each product mentally: (x4)(x9)Ch. 10 - Find each product mentally: (x3)2Ch. 10 - Find each product mentally: (2x6)2Ch. 10 - Find each product mentally: (15x2)2Ch. 10 - Factor each expression completely: 6a+6Ch. 10 - Factor each expression completely: 5x15Ch. 10 - Factor each expression completely: xy+2xzCh. 10 - Factor each expression completely: y4+17y318y2Ch. 10 - Factor each expression completely: y26y7Ch. 10 - Factor each expression completely: z2+18z+81Ch. 10 - Factor each expression completely: x2+10x+16Ch. 10 - Factor each expression completely: 4a2+4x2Ch. 10 - Factor each expression completely: x217x+72Ch. 10 - Factor each expression completely: x218x+81Ch. 10 - Factor each expression completely: x2+19x+60Ch. 10 - Factor each expression completely: y22y+1Ch. 10 - Factor each expression completely: x23x28Ch. 10 - Factor each expression completely: x24x96Ch. 10 - Factor each expression completely: x2+x110Ch. 10 - Factor each expression completely: x249Ch. 10 - Factor each expression completely: 16y29x2Ch. 10 - Factor each expression completely: x2144Ch. 10 - Factor each expression completely: 25x281y2Ch. 10 - Factor each expression completely: 4x224x364Ch. 10 - Factor each expression completely: 5x25x780Ch. 10 - Factor each expression completely: 2x2+11x+14Ch. 10 - Factor each expression completely: 12x219x+4Ch. 10 - Factor each expression completely: 30x2+7x15Ch. 10 - Factor each expression completely: 12x2+143x12Ch. 10 - Factor each expression completely: 4x26x+2Ch. 10 - Factor each expression completely: 36x249y2Ch. 10 - Factor each expression completely: 28x2+82x+30Ch. 10 - Factor each expression completely: 30x227x21Ch. 10 - Factor each expression completely: 4x34xCh. 10 - Factor each expression completely: 25y2100Ch. 10 - Find each product mentally: (x+8)(x3)Ch. 10 - Find each product mentally: (2x8)(5x6)Ch. 10 - Find each product mentally: (2x8)(2x+8)Ch. 10 - Find each product mentally: (3x5)2Ch. 10 - Find each product mentally: (4x7)(2x+3)Ch. 10 - Find each product mentally: (9x7)(5x+4)Ch. 10 - Factor each expression completely: x2+4x+3Ch. 10 - Factor each expression completely: x212x+35Ch. 10 - Factor each expression completely: 6x27x90Ch. 10 - Factor each expression completely: 9x2+24x+16Ch. 10 - Factor each expression completely: x2+7x18Ch. 10 - Factor each expression completely: 4x225Ch. 10 - Factor each expression completely: 6x2+13x+6Ch. 10 - Factor each expression completely: 3x2y218x2y+27x2Ch. 10 - Factor each expression completely: 3x211x4Ch. 10 - Factor each expression completely: 15x219x10Ch. 10 - Factor each expression completely: 5x2+7x6Ch. 10 - Factor each expression completely: 3x23x6Ch. 10 - Factor each expression completely: 9x2121Ch. 10 - Factor each expression completely: 9x230x+25Ch. 10 - Perform the indicated operations and simplify:...Ch. 10 - Round 746.83 to the a. nearest tenth and b....Ch. 10 - Do as indicated and simplify: 2315+23Ch. 10 - Write 0.000318 in a. scientific notation and b....Ch. 10 - Change 625 g to kg.Ch. 10 - Change 7 m2 to ft2.Ch. 10 - Read the voltmeter scale in Illustration 1....Ch. 10 - Use the rules of measurement to multiply:...Ch. 10 - Combine like terms and simplify: 3(x2)4(23x)Ch. 10 - Combine like terms and simplify: (6a3b+2c)(2a3b+c)Ch. 10 - Solve: x34=2x5Ch. 10 - A rectangle is 5 m longer than it is wide. Its...Ch. 10 - Solve the proportion and round the result to three...Ch. 10 - A pulley is 18 in. in diameter, is rotating at 125...Ch. 10 - Complete the ordered-pair solutions of the...Ch. 10 - Solve for y: 3xy=5Ch. 10 - Draw the graph of 3x+4y=24Ch. 10 - Draw the graphs of 2xy=4 and x+3y=5. Find the...Ch. 10 - Solve each pair of linear equation:...Ch. 10 - Solve each pair of linear equation: y=3x5x+3y=8Ch. 10 - Solve each pair of linear equation: xy=63x+y=2Ch. 10 - Solve each pair of linear equation: xy=63x+y=2Ch. 10 - Solve each pair of linear equation:...Ch. 10 - Two rental automobiles were leased for a total of...Ch. 10 - Find each product mentally: (2x5)(3x+8)Ch. 10 - Find each product mentally: (5x7y)2Ch. 10 - Find each product mentally: (3x5)(5x7)Ch. 10 - Factor each expression completely: 7x363xCh. 10 - Factor each expression completely: 4x3+12x2Ch. 10 - Factor each expression completely: 2x27x4
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- An open-top rectangular box is being constructed to hold a volume of 150 in³. The base of the box is made from a material costing 7 cents/in². The front of the box must be decorated, and will cost 11 cents/in². The remainder of the sides will cost 3 cents/in². Find the dimensions that will minimize the cost of constructing this box. Please show your answers to at least 4 decimal places. Front width: Depth: in. in. Height: in.arrow_forwardFind and classify the critical points of z = (x² – 8x) (y² – 6y). Local maximums: Local minimums: Saddle points: - For each classification, enter a list of ordered pairs (x, y) where the max/min/saddle occurs. Enter DNE if there are no points for a classification.arrow_forwardCalculate the 90% confidence interval for the population mean difference using the data in the attached image. I need to see where I went wrong.arrow_forward
- Suppose that f(x, y, z) = (x − 2)² + (y – 2)² + (z − 2)² with 0 < x, y, z and x+y+z≤ 10. 1. The critical point of f(x, y, z) is at (a, b, c). Then a = b = C = 2. Absolute minimum of f(x, y, z) is and the absolute maximum isarrow_forwarda) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 x2 x3 81 82 83 84 81 -2 0 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 -2 -2 0 11 0 0-4 0 -8arrow_forwardb) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau, and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize ₁ - 2x2+x34x4 subject to 2x1+x22x3x41, 5x1 + x2-x3-×4 ≤ −1, 2x1+x2-x3-34 2, 1, 2, 3, 40.arrow_forward
- 9. An elementary single period market model contains a risk-free asset with interest rate r = 5% and a risky asset S which has price 30 at time t = 0 and will have either price 10 or 60 at time t = 1. Find a replicating strategy for a contingent claim with payoff h(S₁) = max(20 - S₁, 0) + max(S₁ — 50, 0). Total [8 Marks]arrow_forward8. An elementary single period market model has a risky asset with price So = 20 at the beginning and a money market account with interest rate r = 0.04 compounded only once at the end of the investment period. = = In market model A, S₁ 10 with 15% probability and S₁ 21 with 85% probability. In market model B, S₁ = 25 with 10% probability and S₁ = 30 with 90% probability. For each market model A, B, determine if the model is arbitrage-free. If not, construct an arbitrage. Total [9 Marks]arrow_forwardb) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau, and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize ₁ - 2x2+x34x4 subject to 2x1+x22x3x41, 5x1 + x2-x3-×4 ≤ −1, 2x1+x2-x3-34 2, 1, 2, 3, 40.arrow_forward
- Suppose we have a linear program in standard equation form maximize cTx subject to Ax = b. x ≥ 0. and suppose u, v, and w are all optimal solutions to this linear program. (a) Prove that zu+v+w is an optimal solution. (b) If you try to adapt your proof from part (a) to prove that that u+v+w is an optimal solution, say exactly which part(s) of the proof go wrong. (c) If you try to adapt your proof from part (a) to prove that u+v-w is an optimal solution, say exactly which part(s) of the proof go wrong.arrow_forwarda) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 x2 x3 81 82 83 84 81 -2 0 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 -2 -2 0 11 0 0-4 0 -8arrow_forwardMicrosoft Excel snapshot for random sampling: Also note the formula used for the last column 02 x✓ fx =INDEX(5852:58551, RANK(C2, $C$2:$C$51)) A B 1 No. States 2 1 ALABAMA Rand No. 0.925957526 3 2 ALASKA 0.372999976 4 3 ARIZONA 0.941323044 5 4 ARKANSAS 0.071266381 Random Sample CALIFORNIA NORTH CAROLINA ARKANSAS WASHINGTON G7 Microsoft Excel snapshot for systematic sampling: xfx INDEX(SD52:50551, F7) A B E F G 1 No. States Rand No. Random Sample population 50 2 1 ALABAMA 0.5296685 NEW HAMPSHIRE sample 10 3 2 ALASKA 0.4493186 OKLAHOMA k 5 4 3 ARIZONA 0.707914 KANSAS 5 4 ARKANSAS 0.4831379 NORTH DAKOTA 6 5 CALIFORNIA 0.7277162 INDIANA Random Sample Sample Name 7 6 COLORADO 0.5865002 MISSISSIPPI 8 7:ONNECTICU 0.7640596 ILLINOIS 9 8 DELAWARE 0.5783029 MISSOURI 525 10 15 INDIANA MARYLAND COLORADOarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Whiteboard Math: The Basics of Factoring; Author: Whiteboard Math;https://www.youtube.com/watch?v=-VKAYqzRp4o;License: Standard YouTube License, CC-BY
Factorisation using Algebraic Identities | Algebra | Mathacademy; Author: Mathacademy;https://www.youtube.com/watch?v=BEp1PaU-qEw;License: Standard YouTube License, CC-BY
How To Factor Polynomials The Easy Way!; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=U6FndtdgpcA;License: Standard Youtube License