If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. The equations x = a ϕ − a sin ϕ , y = a − a cos ϕ 0 ≤ ϕ ≤ 2 π represent one arch of a cycloid. Show that the surface area generated by revolving this curve about the x -axis is given by S = 64 π a 2 / 3.
If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. The equations x = a ϕ − a sin ϕ , y = a − a cos ϕ 0 ≤ ϕ ≤ 2 π represent one arch of a cycloid. Show that the surface area generated by revolving this curve about the x -axis is given by S = 64 π a 2 / 3.
If
f
′
t
and
g
′
t
are continuous functions, and if no segment of the curve
x
=
f
t
,
y
=
g
t
a
≤
t
≤
b
is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x-axis is
S
=
∫
a
b
2
π
y
d
x
d
t
2
+
d
y
d
t
2
d
t
and the area of the surface generated by revolving the curve about the y-axis is
S
=
∫
a
b
2
π
x
d
x
d
t
2
+
d
y
d
t
2
d
t
[The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises.
The equations
x
=
a
ϕ
−
a
sin
ϕ
,
y
=
a
−
a
cos
ϕ
0
≤
ϕ
≤
2
π
represent one arch of a cycloid. Show that the surface area generated by revolving this curve about the x-axis is given by
S
=
64
π
a
2
/
3.
Calculus lll
May I please have the blank lines completed, and final statement defined as a result?
Thank you for the support!
3. Consider the polynomial equation 6-iz+7z² - iz³ +z = 0 for which the roots are 3i, -2i, -i,
and i.
(a) Verify the relations between this roots and the coefficients of the polynomial.
(b) Find the annulus region in which the roots lie.
Force with 800 N and 400 N are acting on a machine part at 30° and 60°, respectively with the positive x axis
Intro Stats, Books a la Carte Edition (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY