Fixed-point iteration A method for estimating a solution to the equation x = f ( x ), known as fixed-point iteration , is based on the following recurrence relation. Let x 0 = c and x n +1 = f ( x n ), for n = 1, 2, 3, ... and a real number c . If the sequence { x n } n = 0 ∞ converges to L , then L is a solution to the equation x = f ( x ) and L is called a fixed point of f . To estimate L with p digits of accuracy to the right of the decimal point, we can compute the terms of the sequence { x n } n = 0 ∞ until two successive values agree to p digits of accuracy. Use fixed-point iteration to find a solution to the following equations with p = 3 digits of accuracy using the given value of x 0 . 79. x = cos x ; x 0 = 0.8
Fixed-point iteration A method for estimating a solution to the equation x = f ( x ), known as fixed-point iteration , is based on the following recurrence relation. Let x 0 = c and x n +1 = f ( x n ), for n = 1, 2, 3, ... and a real number c . If the sequence { x n } n = 0 ∞ converges to L , then L is a solution to the equation x = f ( x ) and L is called a fixed point of f . To estimate L with p digits of accuracy to the right of the decimal point, we can compute the terms of the sequence { x n } n = 0 ∞ until two successive values agree to p digits of accuracy. Use fixed-point iteration to find a solution to the following equations with p = 3 digits of accuracy using the given value of x 0 . 79. x = cos x ; x 0 = 0.8
Solution Summary: The author calculates the solution of the equation x=mathrmcosx with p=3 digits of accuracy. The method of estimating the value of L is called as fixed
Fixed-point iteration A method for estimating a solution to the equation x = f(x), known as fixed-point iteration, is based on the following recurrence relation. Let x0 = c and xn+1 = f(xn), for n = 1, 2, 3, ... and a real number c. If the sequence
{
x
n
}
n
=
0
∞
converges to L, then L is a solution to the equation x = f(x) and L is called a fixed point of f. To estimate L with p digits of accuracy to the right of the decimal point, we can compute the terms of the sequence
{
x
n
}
n
=
0
∞
until two successive values agree to p digits of accuracy. Use fixed-point iteration to find a solution to the following equations with p = 3 digits of accuracy using the given value of x0.
Find a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14
and -3x - y + z = −21.
The equation of the plane is:
Determine whether the lines
L₁ : F(t) = (−2, 3, −1)t + (0,2,-3) and
L2 : ƒ(s) = (2, −3, 1)s + (−10, 17, -8)
intersect. If they do, find the point of intersection.
● They intersect at the point
They are skew lines
They are parallel or equal
Answer questions 2
Chapter 10 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY