a.
To write equation to find the length of the skid marks.
a.
Answer to Problem 1MP
Explanation of Solution
Given information :
Here we shall use the Pythagoras theorem.
According to Pythagoras theorem in any right angle
Hence we shall put the values given,
Let the length of the skid marks be
Hence this is the equation to determine the length of skid marks.
b.
To find the length of the skid marks.
b.
Answer to Problem 1MP
The length of skid marks is 140 ft.
Explanation of Solution
Given information :
Here we shall use the Pythagoras theorem.
According to Pythagoras theorem in any right angle triangle,
Hence we shall put the values given,
Let the length of the skid marks be
Hence the length of skid marks is 140 ft.
c.
To explain how out answer in part b is reasonable.
c.
Explanation of Solution
The length of skid marks is 140 ft.
This length of the right angle triangle is the leg of the triangle and hence we be shorter than the hypotenuse. As we know that the hypotenuse is the largest side in a right angle triangle.
This answer is reasonable as it can be clearly observed that it is shorter than the length of hypotenuses.
Chapter 10 Solutions
High School Math 2015 Common Core Algebra 1 Student Edition Grade 8/9
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
Basic Business Statistics, Student Value Edition
Elementary Statistics: Picturing the World (7th Edition)
A First Course in Probability (10th Edition)
Pre-Algebra Student Edition
Elementary Statistics (13th Edition)
- 1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forward
- 1.2.16. Let e be an edge appearing an odd number of times in a closed walk W. Prove that W contains the edges of a cycle through c.arrow_forward1.2.11. (−) Prove or disprove: If G is an Eulerian graph with edges e, f that share vertex, then G has an Eulerian circuit in which e, f appear consecutively. aarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forward
- 1.2.6. (-) In the graph below (the paw), find all the maximal paths, maximal cliques, and maximal independent sets. Also find all the maximum paths, maximum cliques, and maximum independent sets.arrow_forward1.2.13. Alternative proofs that every u, v-walk contains a u, v-path (Lemma 1.2.5). a) (ordinary induction) Given that every walk of length 1-1 contains a path from its first vertex to its last, prove that every walk of length / also satisfies this. b) (extremality) Given a u, v-walk W, consider a shortest u, u-walk contained in W.arrow_forward1.2.10. (-) Prove or disprove: a) Every Eulerian bipartite graph has an even number of edges. b) Every Eulerian simple graph with an even number of vertices has an even num- ber of edges.arrow_forward
- 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forward1.2.4. (-) Let G be a graph. For v € V(G) and e = E(G), describe the adjacency and incidence matrices of G-v and G-e in terms of the corresponding matrices for G.arrow_forward1.2.6. (-) In the graph below (the paw), find all the maximal paths, maximal cliques, and maximal independent sets. Also find all the maximum paths, maximum cliques, and maximum independent sets.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education