a)
To determine: The arithmetic average for large-company stocks and Treasury bills.
Introduction:
Arithmetic average return refers to the
a)
Answer to Problem 8QP
Answer:
The arithmetic average of large-company stocks is 3.24%, and the arithmetic average of Treasury bills is 6.55%.
Explanation of Solution
Explanation:
Given information:
Refer to Table 10.1 in the chapter. Extract the data for large-company stocks and Treasury bills from 1973 to 1978 as follows:
Year |
Large co. stock return | T-bill return |
Risk premium |
1973 | –14.69% | 7.29% | –21.98% |
1974 | –26.47% | 7.99% | –34.46% |
1975 | 37.23% | 5.87% | 31.36% |
1976 | 23.93% | 5.07% | 18.86% |
1977 | –7.16% | 5.45% | –12.61% |
1978 | 6.57% | 7.64% | –1.07% |
Total | 19.41% | 39.31% | –19.90% |
The formula to calculate the arithmetic average return:
Where,
“∑Xi” refers to the total of observations,
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”),
“N” refers to the number of observations.
Compute the arithmetic average for large-company stocks:
The total of the observations is 19.41%. There are 6 observations.
Hence, the arithmetic average of large-company stocks is 3.24%.
Compute the arithmetic average for Treasury bill return:
The total of the observations is -39.31%. There are 6 observations.
Hence, the arithmetic average of Treasury bills is 6.55%.
b)
To determine: The standard deviation of large-company stocks and Treasury bills.
Introduction:
Variance refers to the average difference of squared deviations of the actual data from the mean or average.
Standard deviation refers to the deviation of the observations from the mean.
b)
Answer to Problem 8QP
Answer:
The standard deviation of large-company stocks is 24.11%, and the standard deviation of Treasury bills is 1.24%.
Explanation of Solution
Explanation:
Given information:
Refer to Table 10.1 in the chapter. The arithmetic average of Treasury bills is 6.55%. Extract the data for large-company stocks and Treasury bills from 1973 to 1978 as follows:
Year |
Large co. Stock return | T-bill return |
Risk premium |
1973 | –14.69% | 7.29% | –21.98% |
1974 | –26.47% | 7.99% | –34.46% |
1975 | 37.23% | 5.87% | 31.36% |
1976 | 23.93% | 5.07% | 18.86% |
1977 | –7.16% | 5.45% | –12.61% |
1978 | 6.57% | 7.64% | –1.07% |
Total | 19.41% | 39.31% | –19.90% |
The formula to calculate the standard deviation of the returns:
“SD(R)” refers to the standard deviation of the return,
“X̅” refers to the arithmetic average,
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”),
“N” refers to the number of observations.
Compute the squared deviations of large-company stocks:
Large-company stocks | |||
Actual return |
Average return(B) |
Deviation (A)–(B)=(C) |
Squared Deviation (C)2 |
(A) | |||
−0.1469 | 0.0324 | −0.1793 | 0.0321485 |
−0.2647 | 0.0324 | −0.2971 | 0.0882684 |
0.3723 | 0.0324 | 0.3399 | 0.115532 |
0.2393 | 0.0324 | 0.2069 | 0.0428076 |
−0.0716 | 0.0324 | −0.104 | 0.010816 |
0.0657 | 0.0324 | 0.0333 | 0.0011089 |
Total of squared deviation | 0.05813 | ||
Compute the standard deviation of the return:
Hence, the standard deviation of large-company stocks is 24.111%.
Compute the squared deviations of Treasury bill:
Treasury bill | |||
Actual return |
Average Return (B) |
Deviation (A)–(B)=(C) |
Squared Deviation (C)2 |
(A) | |||
0.0729 | 0.0655 | 0.0074 | 0.00005 |
0.0799 | 0.0655 | 0.0144 | 0.00020736 |
0.0587 | 0.0655 | -0.0068 | 0.00004624 |
0.0507 | 0.0655 | -0.0148 | 0.00021904 |
0.0545 | 0.0655 | -0.011 | 0.000121 |
0.0764 | 0.0655 | 0.0109 | 0.00011881 |
0.000154 |
Compute the standard deviation:
Hence, the standard deviation of Treasury bills is 1.24%.
c)
To determine: The arithmetic average and the standard deviation of observed risk premium.
Introduction:
Arithmetic average return refers to the returns that an investment earns in an average year over different periods.
Standard deviation refers to the deviation of the observations from the mean.
c)
Answer to Problem 8QP
Answer:
The arithmetic average is −3.32%, and the standard deviation is 24.92%.
Explanation of Solution
Explanation:
Given information:
Refer to Table 10.1 in the chapter. Extract the data for large-company stocks and Treasury bills from 1973 to 1978 as follows:
Year |
Large co. stock return | T-bill return |
Risk premium |
1973 | –14.69% | 7.29% | –21.98% |
1974 | –26.47% | 7.99% | –34.46% |
1975 | 37.23% | 5.87% | 31.36% |
1976 | 23.93% | 5.07% | 18.86% |
1977 | –7.16% | 5.45% | –12.61% |
1978 | 6.57% | 7.64% | –1.07% |
Total | 19.41% | 39.31% | –19.90% |
The formula to calculate the arithmetic average return:
Where,
“∑Xi” refers to the total of observations,
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”),
“N” refers to the number of observations.
The formula to calculate the standard deviation:
“SD (R)” refers to the standard deviation of the return,
“X̅” refers to the arithmetic average,
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”),
“N” refers to the number of observations.
Compute the arithmetic average for risk premium:
The total of the observations is (-19.90%). There are 6 observations.
Hence, the arithmetic average of risk premium is −3.32%.
Compute the squared deviations of risk premium:
Risk premium | |||
Actual return (A) |
Average Return (B) |
Deviation (A)–(B)=(C) |
Squared deviation |
(C)2 | |||
-0.2198 | -0.0332 | -0.1866 | 0.034820 |
-0.3446 | -0.0332 | -0.3114 | 0.096970 |
0.3136 | -0.0332 | 0.3468 | 0.120270 |
0.1886 | -0.0332 | 0.2218 | 0.049195 |
-0.1261 | -0.0332 | -0.0929 | 0.008630 |
-0.0107 | -0.0332 | 0.0225 | 0.000506 |
0.062078 |
Compute the standard deviation:
Hence, the standard deviation of risk premium is 24.92%.
d)
To determine: Whether the risk premium can be negative before and after the investment.
Introduction:
Arithmetic average return refers to the returns that an investment earns in an average year over different periods.
Variance refers to the average difference of squared deviations of the actual data from the mean or average.
Standard deviation refers to the deviation of the observations from the mean.
d)
Explanation of Solution
Explanation:
The risk premium cannot be negative before the investment because the investors require compensation for assuming the risk. They will invest when the stock compensates for the risk. The risk premium can be negative after the investment, if the nominal returns are very low compared to the risk-free returns.
Want to see more full solutions like this?
Chapter 10 Solutions
ESSENTIALS CORPORATE FINANCE + CNCT A.
- What is the duration of a four-year Treasury bond with a 10 percent semiannual coupon selling at par?arrow_forwardDon't used Ai solutionarrow_forwardYou bought a bond five years ago for $935 per bond. The bond is now selling for $980. It also paid $75 in interest per year, which you reinvested in the bond. Calculate the realized rate of return earned on this bond. I want to learn how to solve this on my financial calculator. Can you show me how to solve it through there.arrow_forward
- What are the Cases Not Readily Bound and what is a Dignity in a Research Study? What are the differences between Dignity in a Research Study and Cases Not Readily Bound? Please help to give examples.arrow_forwardWhat are the Case Study Research Design Components. Please help to give examplesWhat are the Case Study Design Tests and Tactics and how would they do?arrow_forwardDescribe some different types of ratios and how they are used to assess performance. Explain the components of the formula and the order of operations to calculate them. Discuss what these ratios say about the financial health of the organization. Determine why it is sometimes misleading to compare a company's financial ratios with those of other firms that operate within the same industry.arrow_forward
- Is there retained earning statement an important financial statement at the income statement and or the cash flows statement?arrow_forward2-13. (Term structure of interest rates) You want to invest your savings of $20,000 in government securities for the next 2 years. Currently, you can invest either in a secu- rity that pays interest of 8% per year for the next 2 years or in a security that matures in 1 year but pays only 6% interest. If you make the latter choice, you would then reinvest your savings at the end of the first year for another year. Why might you choose to make the investment in the 1-year security that pays an interest rate of only 6%, as opposed to investing in the 2-year security pay- ing 8%? Provide numerical support for your answer. Which theory of term structure have you supported in your answer? 2-14. (Yield curve) If yields on Treasury securities were currently as follows: TERM YIELD 6 months 1.0% 1 year 1.7% 2 years 2.1% 3 years 2.4% 4 years 2.7% 5 years 2.9% 10 years 3.5% 15 years 3.9% 20 years 4.0% 30 years 4.1% a. Plot the yield curve. b. Explain this yield curve using the unbiased…arrow_forwardWhat is the holistic case study format, could you please provide an example?arrow_forward
- Description Discuss in detail the Goal(s) of the firm. Additionally, List and discuss the 5 principles that form the foundations of finance. Lastly, List and discuss the various legal forms of business organizations.arrow_forwardWhat is the purpose of a case studty? Why is it important for researchers? Please give the examplesarrow_forwardInvestors in corporate zero-coupon bonds include all of the following EXCEPT: A: Tax-exempt retirement plans B: Conservative investors who want to lock-in their returns C: Investors who are saving for their children's college education D: Investors who do not need current cash flows E: All of the above are potential zero-coupon investorsarrow_forward
- Intermediate Financial Management (MindTap Course...FinanceISBN:9781337395083Author:Eugene F. Brigham, Phillip R. DavesPublisher:Cengage LearningBusiness/Professional Ethics Directors/Executives...AccountingISBN:9781337485913Author:BROOKSPublisher:Cengage
- EBK CONTEMPORARY FINANCIAL MANAGEMENTFinanceISBN:9781337514835Author:MOYERPublisher:CENGAGE LEARNING - CONSIGNMENT