
The following system of equations is designed to determine concentrations
(a) Determine the matrix inverse.
(b) Use the inverse to determine the solution.
(c) Determine how much the rate of mass input to reactor 3 must be increased to induce a
(d) How much will the concentration in reactor 3 be reduced if the rate of mass input to reactors 1 and 2 is reduced by 500 and 250 g/day, respectively?
(a)

To calculate: The inverse for the given system:
Answer to Problem 8P
Solution:
The inverse matrix is,
Explanation of Solution
Given:
The system of equations,
Formula used:
(1) The forward substitution equations for L can be expressed as,
(2) The backward substitution equation for U can be expressed as,
(3)
Calculation:
Consider the system of equations,
The coefficient
And subtracting the result from equation (2).
Thus, multiply equation (1) by
Now subtract this equation from equation (2),
The coefficient
And subtracting the result from equation (3).
Thus, multiply equation (1) by
Now subtract this equation from equation (3),
Now the set of equations is,
The factors
The coefficient
And subtracting the result from equation (5).
Thus, multiply equation (4) by
Now, subtract this equation from equation (5),
The factor
Thus, the matrix obtained is:
Therefore, the LU decomposition is
Now, to find the inverse of the given system.
The first column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the first row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine [D] by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the first column of the inverse matrix as:
Similarly, the second column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the second row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine[D] by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the second column of the inverse matrix as:
Similarly, the third column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the third row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine [D] by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the third column of the inverse matrix as:
Thus, the inverse matrix is:
(b)

To calculate: The solution of the given system using inverse:
Answer to Problem 8P
Solution:
The solution of the given system is
Explanation of Solution
Given:
The system of equations,
Where,
Formula used:
If
Calculation:
Consider the given system of equations:
Where,
The inverse of the given system is:
Thus, the solution vector [C] is given by:
Thus, the solution of the given system is
(c)

To calculate: The rate of mass input to reactor 3 that is to be increased to induce a
Answer to Problem 8P
Solution:
The rate of mass input must be increased to
Explanation of Solution
Given:
The system of equations,
And the inverse of the given system is:
Formula used:
Calculation:
Consider the given system of equations:
Where,
Let rate of mass input to reactor 3 be
Rise in concentration of reactor 1 be
The inverse of the given system is:
So,
Thus,
Hence, the rate of mass input must be increased to
(d)

To calculate: The reduced concentration in reactor 3 if the rate of mass input to reactors 1 and 2 is reduced by 500 and 250 g/day, where the following system of equations is designed to determine concentrations
Answer to Problem 8P
Solution:
The reduced concentration in reactor 3 is
Explanation of Solution
Given:
The system of equations,
And the inverse of the given system is:
Formula used:
Calculation:
Consider the given system of equations:
Where,
Let, the reduced concentration of reactor 3 is
The reduced rate of mass input to reactor 1 is
The reduced rate of mass input to reactor 2 is
The inverse of the given system is:
So,
Thus,
Hence, the reduced concentration in reactor 3 is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
Elementary Statistics: A Step By Step Approach
Beginning and Intermediate Algebra
Precalculus: A Unit Circle Approach (3rd Edition)
Calculus: Early Transcendentals (2nd Edition)
A First Course in Probability (10th Edition)
Mathematics for the Trades: A Guided Approach (11th Edition) (What's New in Trade Math)
- 1 of 2 Monthly Exam. Automobile Eng. Dert 2nd Semster/3rd class Max. Mark: 100% Q1/A/ Compare between the long and short journal bearings B/ With the help of Stribeck's curve, discuss different regimes of lubrication. C/ Explain the importance of Tribology in the design of different machine elements Q2 /A/ According to the SAE viscosity grading system all engine oils are divided into two classes: monograde and multi-grade. Compare between them? B/What are the differences between grease and Synthetic oils C/ Explain the effect of eccentricity ratio & with respect to hydrodynamic journal bearing. Q3/A/ What are the major factors which affect the selection of lubricants? B/What are the criteria to classify sliding bearings? C/ Answer of the following: 1. According to the SAE viscosity classification, the oil (SAE 40) is lower viscosity than the oil (SAE 20) at the same temperature. (True or False) 2. For a slow speed-highly loaded bearing, used oils of high viscosity; while for high-speed…arrow_forwardThe uniform rods have a mass per unit length of 10kg/m . (Figure 1)If the dashpot has a damping coefficient of c=50N⋅s/m , and the spring has a stiffness of k=600N/m , show that the system is underdamped, and then find the pendulum's period of oscillation.arrow_forward10-50. The principal plane stresses and associated strains in a plane at a point are σ₁ = 30 ksi, σ₂ = -10 ksi, e₁ = 1.14(10-3), €2=-0.655(103). Determine the modulus of elasticity and Poisson's ratio. emps to plum... Wednesday FI a וח 2 Q Search 48 F5 - F6 4+ F7 FB F9 FIO FII F12 & * S 6 7 8 9 ㅁ F2 # *F3 3 $ 4 F4 % W E R T Y ப S ALT D F G H X C V B N J Σ H L ว { P [ ] ALT " DELETE BACKSPACE NUM LOCK T 7 HOME ENTER 4 PAUSE SHIFT CTRL Earrow_forward
- 10−9. The state of strain at the point has components of ϵx = −100(10−6), ϵy = −200(10−6), and γxy=100(10−6). Use the strain transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x−y plane.arrow_forwardThe strain gage is placed on the surface of the steel boiler as shown. If it is 0.5 in. long, determine the pressure in the boiler when the gage elongates 0.2(10−3) in. The boiler has a thickness of 0.5 in. and inner diameter of 60 in. Also, determine the maximum x, y in-plane shear strain in the material. Take Est=29(103)ksi, vst=0.3.arrow_forward(read image, answer given)arrow_forward
- 6/86 The connecting rod AB of a certain internal-combustion engine weighs 1.2 lb with mass center at G and has a radius of gyration about G of 1.12 in. The piston and piston pin A together weigh 1.80 lb. The engine is running at a constant speed of 3000 rev/min, so that the angular velocity of the crank is 3000(2)/60 = 100л rad/sec. Neglect the weights of the components and the force exerted by the gas in the cylinder compared with the dynamic forces generated and calculate the magnitude of the force on the piston pin A for the crank angle 0 = 90°. (Suggestion: Use the alternative moment relation, Eq. 6/3, with B as the moment center.) Answer A = 347 lb 3" 1.3" B 1.7" PROBLEM 6/86arrow_forward6/85 In a study of head injury against the instrument panel of a car during sudden or crash stops where lap belts without shoulder straps or airbags are used, the segmented human model shown in the figure is analyzed. The hip joint O is assumed to remain fixed relative to the car, and the torso above the hip is treated as a rigid body of mass m freely pivoted at O. The center of mass of the torso is at G with the initial position of OG taken as vertical. The radius of gyration of the torso about O is ko. If the car is brought to a sudden stop with a constant deceleration a, determine the speed v relative to the car with which the model's head strikes the instrument panel. Substitute the values m = 50 kg, 7 = 450 mm, r = 800 mm, ko = 550 mm, 0 = 45°, and a = 10g and compute v. Answer v = 11.73 m/s PROBLEM 6/85arrow_forwardUsing AutoCADarrow_forward
- 340 lb 340 lb Δarrow_forward4. In a table of vector differential operators, look up the expressions for V x V in a cylindrical coordinate system. (a) Compute the vorticity for the flow in a round tube where the velocity profile is = vo [1-(³] V₂ = Vo (b) Compute the vorticity for an ideal vortex where the velocity is Ve= r where constant. 2πг (c) Compute the vorticity in the vortex flow given by Ve= r 2лг 1- exp ( r² 4vt (d) Sketch all the velocity and vorticity profiles.arrow_forwardIn the figure, Neglects the heat loss and kinetic and potential energy changes, calculate the work produced by the turbine in kJ T = ??? Steam at P=3 MPa, T = 280°C Turbine Rigid tank V = 1000 m³ Turbine Rigid tank V = 100 m³ V = 1000 m³ V = 100 m³ The valve is opened. Initially: evacuated (empty) tank O a. 802.8 Initially: Closed valve O b. 572 O c. 159.93 Od. 415 e. 627.76 equilibriumarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





