
The following system of equations is designed to determine concentrations
(a) Determine the matrix inverse.
(b) Use the inverse to determine the solution.
(c) Determine how much the rate of mass input to reactor 3 must be increased to induce a
(d) How much will the concentration in reactor 3 be reduced if the rate of mass input to reactors 1 and 2 is reduced by 500 and 250 g/day, respectively?
(a)

To calculate: The inverse for the given system:
Answer to Problem 8P
Solution:
The inverse matrix is,
Explanation of Solution
Given:
The system of equations,
Formula used:
(1) The forward substitution equations for L can be expressed as,
(2) The backward substitution equation for U can be expressed as,
(3)
Calculation:
Consider the system of equations,
The coefficient
And subtracting the result from equation (2).
Thus, multiply equation (1) by
Now subtract this equation from equation (2),
The coefficient
And subtracting the result from equation (3).
Thus, multiply equation (1) by
Now subtract this equation from equation (3),
Now the set of equations is,
The factors
The coefficient
And subtracting the result from equation (5).
Thus, multiply equation (4) by
Now, subtract this equation from equation (5),
The factor
Thus, the matrix obtained is:
Therefore, the LU decomposition is
Now, to find the inverse of the given system.
The first column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the first row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine [D] by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the first column of the inverse matrix as:
Similarly, the second column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the second row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine[D] by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the second column of the inverse matrix as:
Similarly, the third column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the third row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine [D] by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the third column of the inverse matrix as:
Thus, the inverse matrix is:
(b)

To calculate: The solution of the given system using inverse:
Answer to Problem 8P
Solution:
The solution of the given system is
Explanation of Solution
Given:
The system of equations,
Where,
Formula used:
If
Calculation:
Consider the given system of equations:
Where,
The inverse of the given system is:
Thus, the solution vector [C] is given by:
Thus, the solution of the given system is
(c)

To calculate: The rate of mass input to reactor 3 that is to be increased to induce a
Answer to Problem 8P
Solution:
The rate of mass input must be increased to
Explanation of Solution
Given:
The system of equations,
And the inverse of the given system is:
Formula used:
Calculation:
Consider the given system of equations:
Where,
Let rate of mass input to reactor 3 be
Rise in concentration of reactor 1 be
The inverse of the given system is:
So,
Thus,
Hence, the rate of mass input must be increased to
(d)

To calculate: The reduced concentration in reactor 3 if the rate of mass input to reactors 1 and 2 is reduced by 500 and 250 g/day, where the following system of equations is designed to determine concentrations
Answer to Problem 8P
Solution:
The reduced concentration in reactor 3 is
Explanation of Solution
Given:
The system of equations,
And the inverse of the given system is:
Formula used:
Calculation:
Consider the given system of equations:
Where,
Let, the reduced concentration of reactor 3 is
The reduced rate of mass input to reactor 1 is
The reduced rate of mass input to reactor 2 is
The inverse of the given system is:
So,
Thus,
Hence, the reduced concentration in reactor 3 is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
Elementary Statistics: A Step By Step Approach
Beginning and Intermediate Algebra
Precalculus: A Unit Circle Approach (3rd Edition)
Calculus: Early Transcendentals (2nd Edition)
A First Course in Probability (10th Edition)
Mathematics for the Trades: A Guided Approach (11th Edition) (What's New in Trade Math)
- No chatgpt pls will upvote Already got wrong chatgpt answer Plzarrow_forwardmatch the equation to it's respective directional field in the image, justify your answer a. dy/dx=x-1 b. dy/dx=1 - y^2 c. dy/dx=y^2 - x^2 d. dy/dx=1-x e. dy/dx=1-y f. dy/dx=x^2 - y^2 g. dy/dx=1+y h. dy/dx=y^2 - 1arrow_forward4. The runway at the Piarco International airport has an equation of -3(x-2y) = 6. If the Priority Bus Route passes through the geometric coordinate (1,-9) and is perpendicular to the runway at the Piarco International airport. Determine the following: a. State two geometric coordinates which the runway at the Piarco International airport passes through. b. Derive the equation of the Priority Bus Route. [2 marks] [6 marks]arrow_forward
- Q4*) Find the extremals y, z of the the functional I = 1 (2yz - 2x² + y²² 12 - 212) dx, with y(0) = 0, y(1) = 1, z(0) = 0, ≈(1) = 0.arrow_forwardSolve the following initial value problem over the interval from t= 0 to 2 where y(0)=1. dy yt² - 1.1y dt Using Euler's method with h=0.5 and 0.25.arrow_forwardQ5*) Write down an immediate first integral for the Euler-Lagrange equation for the integral I = = F(x, y, y″) dx. Hence write down a first integral of the Euler-Lagrange equation for the integral I 1 = √(xy ² + x³y²) dx. Find the general solution of this ordinary differential equation, seeking first the complementary function and then the particular integral. (Hint: the ODE is of homogeneous degree. And, for the particular integral, try functions proportional to log x.)arrow_forward
- Q2*) In question P3 we showed that a minimal surface of revolution is given by revolution (about the x-axis) of the catenary, with equation y = C cosh ((x – B)/C). - (a) Suppose, without loss of generality, that the catenary passes through the initial point P = (x1,y1) = (0, 1). First deduce an expression for the one-parameter family of catenaries passing through point P. Next calculate the value of x at which y takes its minimum value. By using the inequality cosh > √2 (you might like to think about how to prove this), show that there are points Q for which it is impossible to find a catenary passing through both P and Q. In particular, show that it is impossible to find a catenary joining the points (0, 1) and (2, 1). (b) A minimal surface of revolution can be realised experimentally by soap films attached to circular wire frames (see this link and this link for examples). The physical reason for this is that the surface tension, which is proportional to the area, is being minimised.…arrow_forwardQ3*) Consider the integral I Yn, Y₁, Y2, . . ., Y'n) dã, [F(x, Y 1, Y2, · · Yng) = - where y1, 2, ...y are dependent variables, dependent on x. If F is not explicitly dependent on x, deduce the equivalent of the Beltrami identity. Optional: Give an example of a function F(y1, Y2, Y₁, y2), and write down the Euler-Lagrange equations and Beltrami Identity for your example. Does having this Beltrami Identity help solve the problem?arrow_forwardSolve the following problem over the interval from x=0 to 1 using a step size of 0.25 where y(0)= 1. dy = dt (1+4t)√√y (a) Euler's method. (b) Heun's methodarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell




