FUNDAMENTALS OF PHYSICS
12th Edition
ISBN: 9781119798606
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 85P
a)
To determine
The earth's current rate of rotation.
b)
To determine
The earth's rate of rotation from
c)
To determine
The number of days in a year did the earth had
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The triangular coil of wire in the drawing is free to rotate about an axis that is attached along
side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the
loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the
magnitude of the net torque exerted on the loop by the magnetic field?
55.0°
109
B
B
2.00 m.
The triangular coil of wire in the drawing is free to rotate about an axis that is attached along
side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the
loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the
magnitude of the net torque exerted on the loop by the magnetic field?
12 volt battery in your car supplies 1700 Joules of energy to run the headlights during a particular nighttime drive. How much charge must have flowed through the battery to provide this much energy? Give your answer as the number of Coulombs.
Chapter 10 Solutions
FUNDAMENTALS OF PHYSICS
Ch. 10 - Prob. 1QCh. 10 - A force is applied to the rim of a disk that can...Ch. 10 - A good baseball pitcher can throw a baseball...Ch. 10 - What is the angular speed of a the second hand, b...Ch. 10 - When a slice of buttered toast is accidentally...Ch. 10 - The angular position of a point on a rotating...Ch. 10 - ILW A diver makes 2.5 revolutions on the way from...Ch. 10 - The angular position of a point on the rim of a...Ch. 10 - The angular acceleration of a wheel is = 6.0t4 ...Ch. 10 - A drum rotates around its central axis at an...
Ch. 10 - Starting from rest, a disk rotates about its...Ch. 10 - A disk, initially rotating at 120 rad/s, is slowed...Ch. 10 - The angular speed of an automobile engine is...Ch. 10 - ILW A flywheel turns through 40 rev as it slows...Ch. 10 - GO A disk rotates about its central axis starling...Ch. 10 - SSM Starting from rest, a wheel has constant =...Ch. 10 - A merry-go-round rotates from rest with an angular...Ch. 10 - At t = 0, a flywheel has an angular velocity of...Ch. 10 - A pulsar is a rapidly rotating neutron star that...Ch. 10 - What are the magnitudes of a the angular velocity,...Ch. 10 - An object rotates about a fixed axis, and the...Ch. 10 - Between 1911 and 1990, the top of the leaning bell...Ch. 10 - An astronaut is tested in a centrifuge with radius...Ch. 10 - SSM WWW A flywheel with a diameter of 1.20 m is...Ch. 10 - A vinyl record is played by rotating the record so...Ch. 10 - SSM a What is the angular speed about the polar...Ch. 10 - The flywheel of a steam engine runs with a...Ch. 10 - A seed is on a turntable rotating at 3313 rev/min,...Ch. 10 - Figure 10-32 shows an early method of measuring...Ch. 10 - A gyroscope flywheel of radius 2.83 cm is...Ch. 10 - GO A disk, with a radius of 0.25 m. is to be...Ch. 10 - A car starts from rest and moves around a circular...Ch. 10 - SSM Calculate the rotational inertia of a wheel...Ch. 10 - SSM Two uniform solid cylinders, each rotating...Ch. 10 - SSM Calculate the rotational inertia of a meter...Ch. 10 - Trucks can be run on energy stored in a rotating...Ch. 10 - Four identical particles of mass 0.50 kg each are...Ch. 10 - SSM A small ball of mass 0.75 kg is attached to...Ch. 10 - The length of a bicycle pedal arm is 0.152 m, and...Ch. 10 - SSM ILW During the launch from a board, a divers...Ch. 10 - If a 32.0 N m torque on a wheel causes angular...Ch. 10 - GO A pulley, with a rotational inertia of 1.0 103...Ch. 10 - Prob. 58PCh. 10 - An automobile crankshaft transfers energy from the...Ch. 10 - A thin rod of length 0.75 m and mass 0.42 kg is...Ch. 10 - A 32.0 kg wheel, essentially a thin hoop with...Ch. 10 - SSM ILW A meter stick is held vertically with one...Ch. 10 - A uniform cylinder of radius 10 cm and mass 20 kg...Ch. 10 - GO A tall, cylindrical chimney fall;; over when...Ch. 10 - Prob. 68PCh. 10 - A wheel, starling from rest, rotates with a...Ch. 10 - Prob. 72PCh. 10 - A uniform helicopter rotor blade is 7.80 m long,...Ch. 10 - Prob. 75PCh. 10 - Starting from rest at t = 0, a wheel undergoes a...Ch. 10 - SSM A record turntable rotating at 3313 rev/min...Ch. 10 - Prob. 79PCh. 10 - A disk rotates al constant angular acceleration,...Ch. 10 - Prob. 82PCh. 10 - Prob. 84PCh. 10 - Prob. 85PCh. 10 - Prob. 86PCh. 10 - Prob. 87PCh. 10 - Prob. 88PCh. 10 - Prob. 89PCh. 10 - Prob. 90PCh. 10 - Prob. 91PCh. 10 - Prob. 92PCh. 10 - Prob. 93PCh. 10 - Prob. 94PCh. 10 - Prob. 95PCh. 10 - Prob. 96PCh. 10 - Prob. 97P
Knowledge Booster
Similar questions
- An x-y coordinate system is on the floor with a charge of +3.6 Coulombs at a location with coordinates x = -4.2 meters, y = 0 meters, and a charge of 1.2 Coulombs at a location with coordinates x = +7.5 meters, y = 0 meters. What is the potential (voltage) due to these charges, at location x = 0 meters, y = 9.3 meters on the floor using volts?arrow_forwardAn electron from location A (electric potential is +5.7 volts) to location B (electric potential is -12 volts). Calculate the change in the electron's electrostatic potential ENERGY when it moves from point A to point B. Give your answer as the number of Joules.arrow_forwardJack Sparrow and his crew snuck up on their enemies by submerging an upturned wooden rowboat and breathing in an air pocket in the upside-down boat's cavity. What stupidly large force would be needed to hold such a boat underwater? The total volume of the wood is 0.0686 m3 and the density of the boat is 380. kg/m3. It will hold 5.28 m3 of air which has a density of 1.20 kg/m3. The density of water is 1000. kg/m3.arrow_forward
- A high-speed lifting mechanism supports an 881 kg object with a steel cable that is 22.0 m long and 4.00 cm^2 in cross-sectional area. Young's modulus for steel is 20.0 ⋅10^10 Pa. The elongation of the cable is 2.377x10^-3 m. By what amount does the cable increase in length if the object is accelerated upwards at a rate of 3.11 m/s2?arrow_forwardLet us assume you are lifting out a 179 lb sheep. The density of the air around the balloon is 1.23 kg/m3 and the density of the air inside the balloon is 0.946 kg/m3. If the sheep accelerates upwards at 4.84 m/s2, what is the volume of the balloon? 1 kg = 2.20 lbsarrow_forwardAir streams past a small airplane's wings such that speed is 50 m/s over the top surface and 30m/s past the bottom. If the plane has a wing of 9m^2. Ignoring the small height difference find 1.The pressure difference between the top and bottom of the plane's wings. 2. What would be the gravitational pull on the plane assuming the plane is moving horizontally. .arrow_forward
- Draw a right-handed 3D Cartesian coordinate system (= x, y and z axes). Show a vector A with tail in the origin and sticking out in the positive x, y and z directions. Show the angles between A and the positive x, y and z axes, and call these angles α₁, α₂ and α3 Prove that Ax Acos α₁ Ay = Acos α₂ A₂- Acos α3arrow_forwardsolve for Voarrow_forwardDraw a third quadrant vector C. (remember that boldface characters represent vector quantities). Show the standard angle 0 for this vector (= angle that C makes with the positive x- axis). Also show the angle that C makes with the negative y-axis: call the latter angle 8. Finally, show the smallest angles that C makes with the positive x-axis and the positive y-axis: call these angles p1 and p2, repectively. a) Prove the following formulas for the components of C involving the standard angle (hint: start with the formulas for the components based on the angle & and then use (look up if necessary) co-function identities linking cosine and sine of 8 to sine and cosine of 0 since 8 = 3π/2-8 (this will switch cosine and sine around and eliminate - signs as well)) - C=Ccose C₁=Csine b) Prove the following formulas for the components of C: C=Ccosp1 C=Ccosp2arrow_forward
- Notation matters when working with vectors! In particular, it is important to distinguish between the vector itself (A) and its magnitude (A). Illustrate in four separate sketches that each of the following statements is possible: a) both R = A + B and R=A+B are correct b) R = A + B is correct, but R=A+B is incorrect c) R = A + B is incorrect, but R=A+B is correct d) both R = A + B and R=A+B are incorrectarrow_forwardYou know from your math courses that an infinitesimal segment of a circular arc can be considered as a straight line segment. Imagine that you cover a full circle in, say, the clockwise direction, with infinitesimal displacement vectors dr. Then evaluate fdr and fdr (the circle symbol on the integral just reminds us that we have to go around the full circle).arrow_forwardWhen 1.00 g of water at 100˚C changes from the liquid to the gas phase at atmospheric pressure, its change in volume is: 1.67 x 10^-3 How much heat is added to vaporize the water? How much work is done by the water against the atmosphere in expansion? What is the change in the internal energy of the water?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill