(a)
The final volume of the gas.
(a)
Answer to Problem 6SP
The final volume is
Explanation of Solution
Given info: The pressure of an ideal gas mixture is
Write the equation satisfied by idea gas at two different pressure, volume and temperature
Here,
The pressure is remains constant hence,
Rearrange equation (2) to obtain an expression for final volume
Substitute
Conclusion:
The final volume is
(b)
The change in the volume for the process.
(b)
Answer to Problem 6SP
The change in the volume for the process is
Explanation of Solution
Write the expression for the change in volume
Substitute
Conclusion:
The change in the volume for the process is
(c)
The work done by the gas on the surroundings during the expansion.
(c)
Answer to Problem 6SP
The work done by the gas on the surroundings during the expansion is
Explanation of Solution
Given info:
Write the expression for work done in terms of volume and temperature
Here,
Substitute
Conclusion:
The work done by the gas on the surroundings during the expansion is
(d)
The work done if the initial volume is
(d)
Answer to Problem 6SP
The work done will not be same if final volume will be
Explanation of Solution
Given info: The initial volume is
Write the expression for final volume
Substitute
Write the expression for the change in volume
Substitute
Write the expression for the work done.
Substitute
Conclusion:
Therefore, the work done will be
(e)
To explain is the same amount of gas involved in these two situations.
(e)
Answer to Problem 6SP
The amount of gas involved in the two situations will be different.
Explanation of Solution
Write the expression for ideal gas equation
Here,
In this case, both pressure and temperature is remains as same, but there is a change in volume. According to the above equation, the number of molecules will be different for different values of
Conclusion:
Therefore, different amount of gas will be involved in both case since, the volume is changing at constant pressure and temperature the N will also change.
Want to see more full solutions like this?
Chapter 10 Solutions
The Physics of Everyday Phenomena
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON