![EBK PHYSICS OF EVERYDAY PHENOMENA](https://www.bartleby.com/isbn_cover_images/8220106637050/8220106637050_largeCoverImage.jpg)
(a)
The final volume of the gas.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 6SP
The final volume is
Explanation of Solution
Given info: The pressure of an ideal gas mixture is
Write the equation satisfied by idea gas at two different pressure, volume and temperature
Here,
The pressure is remains constant hence,
Rearrange equation (2) to obtain an expression for final volume
Substitute
Conclusion:
The final volume is
(b)
The change in the volume for the process.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 6SP
The change in the volume for the process is
Explanation of Solution
Write the expression for the change in volume
Substitute
Conclusion:
The change in the volume for the process is
(c)
The work done by the gas on the surroundings during the expansion.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 6SP
The work done by the gas on the surroundings during the expansion is
Explanation of Solution
Given info:
Write the expression for work done in terms of volume and temperature
Here,
Substitute
Conclusion:
The work done by the gas on the surroundings during the expansion is
(d)
The work done if the initial volume is
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 6SP
The work done will not be same if final volume will be
Explanation of Solution
Given info: The initial volume is
Write the expression for final volume
Substitute
Write the expression for the change in volume
Substitute
Write the expression for the work done.
Substitute
Conclusion:
Therefore, the work done will be
(e)
To explain is the same amount of gas involved in these two situations.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 6SP
The amount of gas involved in the two situations will be different.
Explanation of Solution
Write the expression for ideal gas equation
Here,
In this case, both pressure and temperature is remains as same, but there is a change in volume. According to the above equation, the number of molecules will be different for different values of
Conclusion:
Therefore, different amount of gas will be involved in both case since, the volume is changing at constant pressure and temperature the N will also change.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- A person is running a temperature of 41.0°C. What is the equivalent temperature on the Fahrenheit scale? (Enter your answer to at least three significant figures.) °Farrow_forwardWhat is the period of a rock of mass 2.0kg tied to the end of a spring 0.625m long string that hangs in a doorway and has an elastic constant of 40N/m?arrow_forwardGive an example of friction speeding up an object.arrow_forward
- Which is the higher temperature? (Assume temperatures to be exact numbers.) (a) 272°C or 272°F? 272°C 272°F They are the same temperature. (b) 200°C or 368°F? 200°C 368°F They are the same temperature.arrow_forwardWhat is the direction of a force vector given by ~v = −6Nˆi − 8Nˆj?arrow_forwardWhat can be said of the position vector of an object far from any influences on its motion?arrow_forward
- ་ Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of acceleration vector a when the object is at position 2?arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)