
Concept explainers
(a)
The complete as well as the balanced chemical equation for the reaction
(a)

Answer to Problem 6PEB
Solution:
The complete and balanced chemical equation for the reaction is
Explanation of Solution
Introduction:
A chemical equation is a way of depicting a
A balanced chemical equation is the one in which the number of atoms for each element and the total charge are same on both the sides of the equation. This is done to avoid the violation of the conservation of mass principle.
Generally, the balanced chemical equation also uses certain symbols to describe the physical state of a substance, whether it is a
The symbols used to represent different physical states are given in the table below:
Physical State | Symbol |
Solid | ( |
Liquid | ( |
Aqueous Solution | ( |
Gas | ( |
Precipitate |
Explanation:
When combustion of carbon-hydrogen compounds takes place, it produces carbon dioxide and water.
Step 1: Write the unbalanced chemical equation for the reaction.
The chemical formulae for each of the substance involved in the reaction are given in the following table:
Name of substance | Chemical formula |
Propene | |
Oxygen | |
Carbon Dioxide | |
Water |
The chemical equation for the reaction is:
Step 2: Now make an inventory for the number of atoms of each element on both sides of the equation.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Carbon | C | 3 | 1 |
Hydrogen | H | 6 | 2 |
Oxygen | O | 2 | 3 |
In this reaction, from the inventory it is clear that the number of atoms for each of the element are unbalanced.
Step 3: Balance the number of atoms on each side of the equation by using appropriate coefficients.
Multiplying the H atoms on the reactants side by 2 and the H atoms on the product side by 6.
The equation now becomes:
Now make another inventory to check balancing.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Carbon | C | 6 | 1 |
Hydrogen | H | 12 | 12 |
Oxygen | O | 2 | 8 |
Now, the H atoms are balanced but the C and O atoms are unbalanced.
So, multiply the C atoms on the products side by 6.
The chemical equation now becomes
Now make another inventory to check balancing.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Carbon | C | 6 | 6 |
Hydrogen | H | 12 | 12 |
Oxygen | O | 2 | 18 |
Now both H and C atoms are balanced but the O atoms are still unbalanced. So multiply the O atoms on reactants side by 9.
The chemical equation now becomes
The balanced chemical equation for this reaction is therefore, given as:
Step 4: Denote the respective physical states of each of the substances (elements or compounds) involved in the reaction by using appropriate notations for each physical state in the balanced chemical equation.
Generally solids are denoted by (
The final balanced chemical equation now, therefore, becomes:
Conclusion:
Hence, the balanced chemical equation for the reaction is
(b)
The complete as well as the balanced chemical equation for the reaction
(b)

Answer to Problem 6PEB
Solution:
The complete and balanced chemical equation for the reaction is
Explanation of Solution
Introduction:
A chemical equation is a way of depicting a chemical reaction using chemical symbols and formulae.
A balanced chemical equation is the one in which the number of atoms for each element and the total charge are same on both the sides of the equation. This is done to avoid the violation of the conservation of mass principle.
Generally, the balanced chemical equation also uses certain symbols to describe the physical state of a substance, whether it is a solid, liquid, gas, aqueous solution or a precipitate.
The symbols used to represent different physical states are given in the table below:
Physical State | Symbol |
Solid | ( |
Liquid | ( |
Aqueous Solution | ( |
Gas | ( |
Precipitate |
Explanation:
This is a reaction of an acid with a base which will produce salt and water.
Step 1: Write the unbalanced chemical equation for the reaction.
The chemical formulae for each of the substance involved in the reaction are given in the following table:
Name of substance | Chemical formula |
Hydrogen Sulphate | |
Potassium Hydroxide | |
Potassium Sulphate | |
Water |
The chemical equation for the reaction is:
Step 2: Now make an inventory for the number of atoms of each element on both sides of the equation.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Potassium | K | 1 | 2 |
Sulphur | S | 1 | 1 |
Hydrogen | H | 3 | 2 |
Oxygen | O | 5 | 5 |
In this reaction, from the inventory it is clear that the number of S and O atoms are balanced but the H and K atoms are unbalanced.
Step 3: Balance the number of atoms on each side of the equation by using appropriate coefficients.
Multiplying the K atoms on the reactants side by 2.
The equation now becomes
Now make another inventory to check balancing.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Potassium | K | 2 | 2 |
Sulphur | S | 1 | 1 |
Hydrogen | H | 4 | 2 |
Oxygen | O | 6 | 5 |
Now the K and S atoms are balanced but the H and O atoms are unbalanced.
So, multiply the H atoms on the products side by 2.
The chemical equation now becomes:
Now make another inventory to check balancing.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Potassium | K | 2 | 2 |
Sulphur | S | 1 | 1 |
Hydrogen | H | 4 | 4 |
Oxygen | O | 6 | 6 |
Now number of atoms for each of the elements are balanced which implies that the chemical equation is now balanced.
The balanced chemical equation for this reaction is therefore, given as:
Step 4: Denote the respective physical states of each of the substances (elements or compounds) involved in the reaction by using appropriate notations for each physical state in the balanced chemical equation.
Generally solids are denoted by (
The final balanced chemical equation now therefore becomes:
So, the chemical equation for the reaction is
Conclusion:
Hence, the complete chemical equation for this reaction is
(c)
The complete as well as the balanced chemical equation for the reaction
(c)

Answer to Problem 6PEB
Solution:
The complete and balanced chemical equation for the reaction is
Explanation of Solution
Introduction:
A chemical equation is a way of depicting a chemical reaction using chemical symbols and formulae.
A balanced chemical equation is the one in which the number of atoms for each element and the total charge are same on both the sides of the equation. This is done to avoid the violation of the conservation of mass principle.
Generally, the balanced chemical equation also uses certain symbols to describe the physical state of a substance, whether it is a solid, liquid, gas, aqueous solution or a precipitate.
The symbols used to represent different physical states are given in the table below:
Physical State | Symbol |
Solid | ( |
Liquid | ( |
Aqueous Solution | ( |
Gas | ( |
Precipitate |
Explanation:
The reaction basically is a combustion of a carbon hydrogen compound and it will produce carbon dioxide and water.
Step 1: Write the unbalanced chemical equation for the reaction.
The chemical formulae for each of the substance involved in the reaction are given in the table below:
Name of substance | Chemical formula |
Glucose | |
Oxygen | |
Carbon dioxide | |
Water vapor |
The chemical equation for the reaction is:
Step 2: Now make an inventory for the number of atoms of each element on both sides of the equation.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Carbon | C | 6 | 1 |
Hydrogen | H | 12 | 2 |
Oxygen | O | 8 | 3 |
Step 3: Balance the number of atoms on each side of the equation by using appropriate coefficients. Repeat this until the number of atoms for each element are equal on both sides of the equation.
As seen from the inventory made in Step 2, number of atoms for each of the elements areunbalanced.
Therefore, multiply the C atoms on the products side by 6 and the H atoms on the products side by 6.
The chemical equation now becomes:
Now make another inventory to check balancing.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Carbon | C | 6 | 6 |
Hydrogen | H | 12 | 12 |
Oxygen | O | 8 | 18 |
Now the H and C atoms are balanced but the O atoms are still unbalanced. Now multiply the oxygen molecule on the reactants side by 6.
The chemical equation now becomes
Now make another inventory to check balancing.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Carbon | C | 6 | 6 |
Hydrogen | H | 12 | 12 |
Oxygen | O | 18 | 18 |
The number of atoms for each element are now balanced. Therefore, the chemical equation is now balanced.
Hence, the balanced chemical equation for this reaction is
Step 4: Denote the respective physical states of each of the substances (elements or compounds) involved in the reaction by using appropriate notations for each physical state in the balanced chemical equation.
Generally solids are denoted by (
The final balanced chemical equation now therefore becomes:
Conclusion:
Hence, the balanced chemical equation for the reaction is
(d)
The complete as well as the balanced chemical equation for the reaction
(d)

Answer to Problem 6PEB
Solution:
The complete and balanced chemical equation for the reaction is
Explanation of Solution
Introduction:
When ions of two different chemical compounds react with each other forming either a precipitate, water or a gas, the reaction is known as an ion exchange reaction. As the name suggests ion exchange, hence in this reaction two ions will replace each other in two chemical compounds.
A chemical equation is a way of depicting a chemical reaction using chemical symbols and formulae.
A balanced chemical equation is the one in which the number of atoms for each element and the total charge are same on both the sides of the equation. This is done to avoid the violation of the conservation of mass principle.
Generally, the balanced chemical equation also uses certain symbols to describe the physical state of a substance, whether it is a solid, liquid, gas, aqueous solution or a precipitate.
The symbols used to represent different physical states are given in the table below:
Physical State | Symbol |
Solid | ( |
Liquid | ( |
Aqueous Solution | ( |
Gas | ( |
Precipitate |
Explanation:
Step 1: Write the unbalanced chemical equation for the reaction.
The chemical formulae for each of the substance involved in the reaction are given in the table below:
Name of substance | Chemical formula |
Sodium Phosphate | |
Silver Nitrate | |
Sodium Nitrate | |
Silver Phosphate |
The chemical equation for the reaction is:
Step 2: Now make an inventory for the number of atoms of each element on both sides of the equation.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Sodium | Na | 3 | 1 |
Silver | Ag | 1 | 3 |
Phosphorus | P | 1 | 1 |
Nitrogen | N | 1 | 1 |
Oxygen | O | 7 | 7 |
In this reaction, from the inventory it is clear that the number of atoms for phosphorus, nitrogen and oxygen are balanced but the number of atoms for sodium and silver are unbalanced.
Step 3: Balance the number of atoms on each side of the equation by using appropriate coefficients. Repeat this until the number of atoms for each element are equal on both sides of the equation.
As seen from the inventory made in Step 2, the number of Na are lesser on the product side and Ag atoms are less on the reactants side. Therefore, multiply the reactant atoms of Ag by 3 and product atoms of Na by 3.
Now the equation becomes
Now make another inventory to check if the equation is balanced or not.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Sodium | Na | 3 | 3 |
Silver | Ag | 3 | 3 |
Phosphorus | P | 1 | 1 |
Nitrogen | N | 3 | 3 |
Oxygen | O | 13 | 13 |
Now, the number of atoms for each of the elements is same on both sides of the equation.
Hence, the chemical equation is now balanced.
Hence, the balanced chemical equation for this reaction is:
Step 4: Denote the respective physical states of each of the substances (elements or compounds) involved in the reaction by using appropriate notations for each physical state in the balanced chemical equation.
Generally solids are denoted by (
The final balanced chemical equation now therefore becomes:
Conclusion:
Hence, the balanced chemical equation for the reaction is
(e)
The complete as well as the balanced chemical equation for the reaction
(e)

Answer to Problem 6PEB
Solution:
The complete and balanced chemical equation for the reaction is
Explanation of Solution
Introduction:
When ions of two different chemical compounds react with each other forming either a precipitate, water or a gas the reaction is known as an ion exchange reaction. As the name suggests ion exchange, hence, in this reaction two ions will replace each other in two chemical compounds.
A chemical equation is a way of depicting a chemical reaction using chemical symbols and formulae.
A balanced chemical equation is the one in which the number of atoms for each element and the total charge are same on both the sides of the equation. This is done to avoid the violation of the conservation of mass principle.
Generally, the balanced chemical equation also uses certain symbols to describe the physical state of a substance, whether it is a solid, liquid, gas, aqueous solution or a precipitate.
The symbols used to represent different physical states are given in the table below:
Physical State | Symbol |
Solid | ( |
Liquid | ( |
Aqueous Solution | ( |
Gas | ( |
Precipitate |
Explanation:
Step 1: Write the unbalanced chemical equation for the reaction.
The chemical formulae for each of the substance involved in the reaction are given in the table below:
Name of substance | Chemical formula |
Sodium Hydroxide | |
Aluminum Nitrate | |
Sodium Nitrate | |
Aluminum Hydroxide |
The chemical equation for the reaction is:
Step 2: Now make an inventory for the number of atoms of each element on both sides of the equation.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Sodium | Na | 1 | 1 |
Aluminum | Al | 1 | 1 |
Nitrogen | N | 3 | 1 |
Hydrogen | H | 1 | 3 |
Oxygen | O | 10 | 6 |
In this reaction, from the inventory it is clear that the number of atoms for sodium and aluminum are balanced but the number of atoms for hydrogen, nitrogen and oxygen are unbalanced.
Step 3: Balance the number of atoms on each side of the equation by using appropriate coefficients. Repeat this until the number of atoms for each element are equal on both sides of the equation.
As seen from the inventory made in Step 2, the number of N atoms are lesser on the product side and H atoms are less on the reactants side. Therefore, multiply the reactant atoms of H by 3 and product atoms of N by 3.
Now the equation becomes
Now make another inventory to check if the equation is balanced or not.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Sodium | Na | 3 | 3 |
Aluminum | Al | 1 | 1 |
Nitrogen | N | 3 | 3 |
Hydrogen | H | 3 | 3 |
Oxygen | O | 12 | 12 |
Now number of atoms for each of the elements is balanced.
Hence, the chemical equation is now balanced.
So, the balanced chemical equation for this reaction is:
Step 4: Denote the respective physical states of each of the substances (elements or compounds) involved in the reaction by using appropriate notations for each physical state in the balanced chemical equation.
Generally solids are denoted by (
The final balanced chemical equation now therefore becomes:
Conclusion:
Hence, the balanced chemical equation for the reaction is
(f)
The complete as well as the balanced chemical equation for the reaction
(f)

Answer to Problem 6PEB
Solution:
The complete and balanced chemical equation for the reaction is:
Explanation of Solution
Introduction:
When ions of two different chemical compounds react with each other forming either a precipitate, water or a gas, the reaction is known as an ion exchange reaction. As the name suggests ion exchange, hence in this reaction two ions will replace each other in two chemical compounds.
A chemical equation is a way of depicting a chemical reaction using chemical symbols and formulae.
A balanced chemical equation is the one in which the number of atoms for each element and the total charge are same on both the sides of the equation. This is done to avoid the violation of the conservation of mass principle.
Generally, the balanced chemical equation also uses certain symbols to describe the physical state of a substance, whether it is a solid, liquid, gas, aqueous solution or a precipitate.
The symbols used to represent different physical states are given in the table below:
Physical State | Symbol |
Solid | ( |
Liquid | ( |
Aqueous Solution | ( |
Gas | ( |
Precipitate |
Explanation:
Step 1: Write the unbalanced chemical equation for the reaction.
The chemical formulae for each of the substance involved in the reaction are given in the table below:
Name of substance | Chemical formula |
Magnesium Hydroxide | |
Phosphoric acid | |
Magnesium Phosphate | |
Water |
The chemical equation for the reaction is:
Step 2: Now make an inventory for the number of atoms of each element on both sides of the equation.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Magnesium | Mg | 1 | 3 |
Phosphorus | P | 1 | 2 |
Hydrogen | H | 5 | 2 |
Oxygen | O | 6 | 9 |
In this reaction, from the inventory it is clear that the number of atoms for all the elements are unbalanced.
Step 3: Balance the number of atoms on each side of the equation by using appropriate coefficients. Repeat this until the number of atoms for each element are equal on both sides of the equation.
As seen from the inventory made in Step 2, the number of Magnesium and the number of phosphorus atoms are lesser on reactants side. Therefore, multiply the reactant atoms of Mg by 3 and reactant atoms of P by 2.
Now the equation becomes
Now make another inventory to check if the equation is balanced or not.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Magnesium | Mg | 3 | 3 |
Phosphorus | P | 2 | 2 |
Hydrogen | H | 12 | 2 |
Oxygen | O | 14 | 9 |
Now, the Mg and P atoms are balanced, but the H and O atoms are unbalanced. So multiply H atoms on products side by 6.
Now make another inventory to check balancing.
Name of element | Symbol | Number of atoms in reactants | Number of atoms in products |
Magnesium | Mg | 3 | 3 |
Phosphorus | P | 2 | 2 |
Hydrogen | H | 12 | 12 |
Oxygen | O | 14 | 14 |
Now number of atoms for each of the elements is balanced.
Hence, the chemical equation is now balanced.
So, the balanced chemical equation for this reaction is:
Step 4: Denote the respective physical states of each of the substances (elements or compounds) involved in the reaction by using appropriate notations for each physical state in the balanced chemical equation.
Generally solids are denoted by (
The final balanced chemical equation now therefore becomes:
Conclusion:
Hence, the balanced chemical equation for the reaction is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK PHYSICAL SCIENCE
- A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
- A circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all stepsarrow_forwardA 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all stepsarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit. Find the direction of the current induced in the circuit. Calculate the current through the resistor.arrow_forward
- In the figure, a conducting rod with length L = 29.0 cm moves in a magnetic field B→ of magnitude 0.510 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. When the charges in the rod are in equilibrium, which point, a or b, has an excess of positive charge and where does the electric field point? What is the magnitude E of the electric field within the rod, the potential difference between the ends of the rod, and the magnitude E of the motional emf induced in the rod? Which point has a higher potential? Please explain all stepsarrow_forwardExamine the data and % error values in Data Table 2 where the mass of the pendulum bob increased but the angular displacement and length of the simple pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the mass of the pendulum bob, to within a reasonable percent error.arrow_forwardPlease graph, my software isn't working - Data Table 4 of Period, T vs √L . (Note: variables are identified for graphing as y vs x.) On the graph insert a best fit line or curve and display the equation on the graph. Thank you!arrow_forward
- I need help with problems 93 and 94arrow_forwardSince the instruction says to use SI units with the correct sig-fig, should I only have 2 s for each trial in the Period column? Determine the theoretical period of the pendulum using the equation T= 2π √L/g using the pendulum length, L, from Data Table 2. Calculate the % error in the periods measured for each trial in Data Table 2 then recordarrow_forwardA radiography contingent are carrying out industrial radiography. A worker accidentally crossed a barrier exposing themselves for 15 seconds at a distance of 2 metres from an Ir-192 source of approximately 200 Bq worth of activity. What dose would they have received during the time they were exposed?arrow_forward
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax




