
Concept explainers
(a)
The mass when a particle is stick to rod.
(a)

Answer to Problem 68P
Explanation of Solution
Given:
Mass of rod, M =
Formula used:
Conservation of mechanical energy:
Rotational kinetic energy:
Where, Iis the moment of inertia and
Calculation:
Consider
Substitute
Consider the angular speed of the system after impact to be
As angular momentum is conserved, so
So
Substitute numerical values and simplify to obtain:
The mechanical energy is conserved. The rotational kinetic energy of the system just after their collision can be related to their potential energy.
Substitute
Substitute
Substituting the values of
Conclusion:
The mass when a particle is stick to rod is
(b)
The energy dissipated in the inelastic collision.
(b)

Answer to Problem 68P
7.5J
Explanation of Solution
Given:
Mass of rod, M =
Formula used:
From the previous part:
Calculation:
The energy dissipated in the inelastic collision is:
Substitute all the values and solve:
Conclusion:
The energy dissipated in the inelastic collision is 7.5J.
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers
- A capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H . At the time 2.35×10−2 s after the connection to the inductor is made, what is the current in the inductor? At that time, how much electrical energy is stored in the inductor?arrow_forwardCan someone help me with this question. Thanks.arrow_forwardCan someone help me with this question. Thanks.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





