Concept explainers
(a)
The mass when a particle is stick to rod.
(a)
Answer to Problem 68P
Explanation of Solution
Given:
Mass of rod, M =
Formula used:
Conservation of mechanical energy:
Rotational kinetic energy:
Where, Iis the moment of inertia and
Calculation:
Consider
Substitute
Consider the angular speed of the system after impact to be
As angular momentum is conserved, so
So
Substitute numerical values and simplify to obtain:
The mechanical energy is conserved. The rotational kinetic energy of the system just after their collision can be related to their potential energy.
Substitute
Substitute
Substituting the values of
Conclusion:
The mass when a particle is stick to rod is
(b)
The energy dissipated in the inelastic collision.
(b)
Answer to Problem 68P
7.5J
Explanation of Solution
Given:
Mass of rod, M =
Formula used:
From the previous part:
Calculation:
The energy dissipated in the inelastic collision is:
Substitute all the values and solve:
Conclusion:
The energy dissipated in the inelastic collision is 7.5J.
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers
- Consider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardA disk with a radius of 4.5 m has a 100-N force applied to its outer edge at two different angles (Fig. P12.55). The disk has arotational inertia of 165 kg m2. a. What is the magnitude of the torque applied to the disk incase 1? b. What is the magnitude of the torque applied to the disk incase 2? c. Assuming the force on the disk is constant in each case,what is the magnitude of the angular acceleration applied tothe disk in each case? d. Which case is a more effective way of spinning the disk?Describe which quantity you are using to determine effectiveness and why you chose that quantity. FIGURE P12.55arrow_forward
- A uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately.arrow_forwardWhat force must be applied to end of a rod along the x-axis of length 2.0 m in order to produce a torque on the rod about the origin of 8.0k Nm ?arrow_forward
- A stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = ℓ. A painter of mass m stands on the ladder a distance d from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P10.73 Problems 73 and 74.arrow_forwardA rod 7.0 m long is pivoted at a point 2.0 m from the left end. A downward force of 50 N acts at the left end, and a downward force of 200 N acts at the right end. At what distance to the right of the pivot can a third force of 300 N acting upward be placed to produce rotational equilibrium? Note: Neglect the weight of the rod. (a) 1.0 m (b) 2.0 m (c) 3.0 m (d) 4.0 m (e) 3.5 marrow_forwardUnder what conditions can a rotating body be in equilibrium? Give an example.arrow_forward
- A uniform rod of length L and mass M is held vertically with one end resting on the floor as shown below. When the rod is released, it rotates around its lower end until it hits the floor. Assuming the lower end of the rod does not slip, what is the linear velocity of the upper end when is hits the floor?arrow_forwardThe precession angular velocity of a gyroscope is 1.0 rad/s. If the mass of the rotating disk is 0.4 kg and its radius is 30 cm, as well as the distance from the center of mass to the pivot, what is the rotation rate in rev/s of the disk?arrow_forwardRotational Inertia Problems 5 and 6 are paired. 5. N A system consists of four boxes modeled as particles connected by very lightweight, stiff rods (Fig. P13.5). The system rotates around the z axis, which points out of the page. Each particle has a mass of 5.00 kg. The distances from the z axis to each particle are r1 = 32.0 cm, r2 = 16.0 cm, r3 = 17.0 cm, and r4 = 34.0 cm. Find the rotational inertia of the system around the z axis. 6. N Use the information in Problem 5 to find the rotational inertia of the system around particle 1. FIGURE P13.5 Problems 5 and 6.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning