
(a)
The time to make each orbit and gravitational force on the object

Answer to Problem 64QAP
Time taken for each orbital
Explanation of Solution
Given info:
Altitude =
Mass of the object =
Formula used:
Calculation:
Time taken for each orbital,
Conclusion:
Time taken for each orbital
(b)
Gravitational force on the object

Answer to Problem 64QAP
Gravitational force
Fraction
Explanation of Solution
Given info:
Altitude =
Mass of the object =
Formula used:
Calculation:
Gravitational force,
Conclusion:
Gravitational force
Fraction
(c)
How can an object be considered weightless in ISS?
According to the calculation comparatively to the weight on Earth, in the ISS weigh of the object is less.
Given info:
Altitude =
Mass of the object =
Explanation:
Comparatively to the weight on Earth, in the ISS weigh of the object is less.
Conclusion:
Comparatively to the weight on Earth, in the ISS weigh of the object is less.

Answer to Problem 64QAP
According to the calculation comparatively to the weight on Earth, in the ISS weigh of the object is less.
Explanation of Solution
Given info:
Altitude =
Mass of the object =
Comparatively to the weight on Earth, in the ISS weigh of the object is less.
Conclusion:
Comparatively to the weight on Earth, in the ISS weigh of the object is less.
Want to see more full solutions like this?
Chapter 10 Solutions
FlipIt for College Physics (Algebra Version - Six Months Access)
- Can you help me to solve this two questions can you teach me step by step how to solve it.arrow_forwardGiven: ruler 11.56 g, small washer 1.85 g each, large washer 24.30g each Use the data in Data Tables 4 and 5 to experimentally determine the mass of your ruler. Use one of your 2 trials with 1 small washer at 0 cm, one of your 2 trials with 2 small washers at 0 cm, and one of your 2 trials with 3 small washers at 0 cm to find three experimental values for the mass of the ruler. How do you experimentalls determine the mass?arrow_forwardCompare the 3 experimental masses of your ruler to the measured mass of your ruler (Data Table 1) by calculating the percent error for each experimental value. Which trial provided the best data for determining the mass of the ruler? Please help, I am not sure how to calculate this. Thanks!arrow_forward
- Please help, everytime I try to input the data only one point shows on the graph. Please graph unsing centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line. Thank you!arrow_forwardPlease help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardBased on your graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?arrow_forward
- Did your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data. My data shows that they are not equal to each other. So what does this mean? Thanks!arrow_forwardPlease help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardExplain how your experiment met the condition for equilibrium in Equation 4: ΣFvertical = ΣFy = 0.arrow_forward
- Can i get answer and solution for this question and can you teach me What we use to get the answer.arrow_forwardCan i get answer and solution and can you teach me how to get it.arrow_forwardConsider a image that is located 30 cm in front of a lens. It forms an upright image 7.5 cm from the lens. Theillumination is so bright that that a faint inverted image, due to reflection off the front of the lens, is observedat 6.0 cm on the incident side of the lens. The lens is then turned around. Then it is observed that the faint,inverted image is now 10 cm on the incident side of the lens.What is the index of refraction of the lens?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





