Elements of Electromagnetics
Elements of Electromagnetics
7th Edition
ISBN: 9780190698669
Author: Sadiku
Publisher: Oxford University Press
Question
Book Icon
Chapter 10, Problem 59P
To determine

Find the power densities in both media.

Expert Solution & Answer
Check Mark

Answer to Problem 59P

The power densities in medium-1 and medium-2 are 38.197cos2(ωt1.2z)az13.75cos2(ωt+1.2z)azW/m2_ and 24.46cos2(ωt0.3z)azW/m2_, respectively.

Explanation of Solution

Calculation:

Write the expression for incident electric field in medium-1.

Ei=60cos(ωtβ1z)axV/m        (1)

Consider the expression for phase constant β1 in medium-1.

β1=ωμε

Rewrite the expression for the given data.

β1=ωμo(16εo) {μ=μoε=16εo}

Substitute 90Mrad/s for ω, 4π×107H/m for μo, and 10936πF/m for εo.

β1=(90Mrad/s)(4π×107H/m)(16)(10936πF/m)=(90×106)(43×108)rad/m=1.2rad/m

Substitute 1.2rad/m for β1 in Equation (1).

Ei=60cos(ωt1.2z)axV/m

Consider the expression to find the total electric field in medium-1.

E1=Ei+Er        (2)

Here,

Er is the reflected electric field.

Consider the expression for reflected electric field in medium-1.

Er=Erocos(ωt+1.2z)axV/m        (3)

Here,

Ero is the magnitude of reflected electric field at z=0.

Consider the expression for reflected electric field at z=0.

Ero=ΓEio        (4)

Here,

Eio is the magnitude of incident electric field at z=0, which is 60V/m, and

Γ is the reflection coefficient.

Write the expression to find the reflection coefficient.

Γ=η2η1η2+η1        (5)

Here,

η1 is the intrinsic impedance for medium-1 and

η2 is the intrinsic impedance for medium-2.

As medium-2 is free space, the intrinsic impedance is 120πΩ.

η2=120πΩ

Find the intrinsic impedance for medium-1.

η1=με=μo16εo {μ=μoε=16εo}=14μoεo=14(120πΩ) {μoεo120πΩ}

η1=30πΩ

Substitute 30πΩ for η1 and 120πΩ for η2 in Equation (5).

Γ=120πΩ30πΩ120πΩ+30πΩ=35

Substitute 35 for Γ and 60V/m for Eio in Equation (4).

Ero=(35)(60V/m)=36V/m

Substitute 36V/m for Ero in Equation (3).

Er=36cos(ωt+1.2z)axV/m

Consider the expression to find the incident magnetic field in medium-1.

Hi=Eioη1cos(ωt1.2z)aHi        (6)

Find the vector aHi.

aHi=ak×aEi=az×ax {aEi=axak=az}=ay {az×ax=ay}

Substitute 60V/m for Eio, 30πΩ for η1, and ay for aHi in Equation (6).

Hi=60V/m30πΩcos(ωt1.2z)ay=0.63661cos(ωt1.2z)ayA/m

Consider the expression to find the reflected magnetic field in medium-1.

Hr=Eroη1cos(ωt+1.2z)aHr        (7)

Find the vector aHr.

aHr=ak×aEr=az×ax {aEr=axak=az}=ay {az×ax=ay}

Substitute 36V/m for Eio, 30πΩ for η1, and ay for aHr in Equation (7).

Hr=36V/m30πΩcos(ωt+1.2z)(ay)=0.38197cos(ωt+1.2z)ayA/m

From Equation (1), the total electric field in medium-1 is the sum of incident and reflected electric fields. Similarly, the total magnetic field in medium-1 is the sum of incident and reflected magnetic fields.

Write the expression to find the power density in medium-1.

P1=Ei×Hi+Er×Hr        (8)

Find the cross product Ei×Hi.

Ei×Hi=|axayaz60cos(ωt1.2z)0000.63661cos(ωt1.2z)0|=((00)ax(00)ay+{[60cos(ωt1.2z)][0.63661cos(ωt1.2z)]0}az)W/m2=38.197cos2(ωt1.2z)azW/m2

Find the cross product Er×Hr.

Er×Hr=|axayaz36cos(ωt+1.2z)0000.38197cos(ωt+1.2z)0|=((00)ax(00)ay+{[36cos(ωt+1.2z)][0.38197cos(ωt+1.2z)]0}az)W/m2=13.75cos2(ωt+1.2z)azW/m2

Substitute 38.197cos2(ωt1.2z)azW/m2 for Ei×Hi and 13.75cos2(ωt+1.2z)azW/m2 for Er×Hr in Equation (8).

P1=(38.197cos2(ωt1.2z)azW/m2)+(13.75cos2(ωt+1.2z)azW/m2)=38.197cos2(ωt1.2z)az13.75cos2(ωt+1.2z)azW/m2

Consider the expression for transmitted electric field in medium-2.

Et=Etocos(ωtβ2z)ax        (9)

Here,

Eto is the magnitude of transmitted electric field at z=0 and

β2 is the phase constant in medium-2.

Consider the expression for phase constant β2 in medium-2.

β2=ωμoεo

Substitute 90Mrad/s for ω, 4π×107H/m for μo, and 10936πF/m for εo.

β2=(90Mrad/s)(4π×107H/m)(10936πF/m)=(90×106)(13×108)rad/m=0.3rad/m

Substitute 0.3rad/m for β2 in Equation (9).

Et=Etocos(ωt0.3z)ax        (10)

Consider the expression to find the magnitude of transmitted electric field at z=0.

Eto=τEio        (11)

Here,

τ is the transmission coefficient.

Consider for the expression for transmission coefficient.

τ=2η2η2+η1

Substitute 120πΩ for η1 and 30πΩ for η2.

τ=(2)(120πΩ)120πΩ+30πΩ=85

Substitute 85 for τ and 60V/m for Eio in Equation (11).

Eto=(85)(60V/m)=96V/m

Substitute 96V/m for Eto in Equation (10).

Et=96cos(ωt0.3z)axV/m

Consider the expression to find the transmitted magnetic field in medium-2.

Ht=Etoη2cos(ωt0.3z)aHt        (12)

Find the vector aHt.

aHt=ak×aEt=az×ax {aEt=axak=az}=ay {az×ax=ay}

Substitute 96V/m for Eto, 120πΩ for η2, and ay for aHt in Equation (12).

Ht=96V/m120πΩcos(ωt0.3z)(ay)=0.25464cos(ωt0.3z)ayA/m

Write the expression to find the power density in medium-2.

P2=Et×Ht=|axayaz96cos(ωt0.3z)0000.25464cos(ωt0.3z)0|=((00)ax(00)ay+{[96cos(ωt0.3z)][0.25464cos(ωt0.3z)]0}az)W/m224.46cos2(ωt0.3z)azW/m2

Conclusion:

Thus, the power densities in medium-1 and medium-2 are 38.197cos2(ωt1.2z)az13.75cos2(ωt+1.2z)azW/m2_ and 24.46cos2(ωt0.3z)azW/m2_, respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three cables are pulling on a ring located at the origin, as shown in the diagram below.  FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°.  FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°.  Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N.  Specify the direction of FC using its coordinate direction angles.
turbomachienery
auto controls

Chapter 10 Solutions

Elements of Electromagnetics

Ch. 10.10 - Prob. 11PECh. 10.10 - Prob. 12PECh. 10.11 - Prob. 13PECh. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - Prob. 14PCh. 10 - Prob. 15PCh. 10 - Prob. 16PCh. 10 - Prob. 17PCh. 10 - Prob. 18PCh. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Prob. 28PCh. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - Prob. 59PCh. 10 - Prob. 60PCh. 10 - Prob. 61PCh. 10 - Prob. 62PCh. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - Prob. 66PCh. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - Prob. 71PCh. 10 - Prob. 72PCh. 10 - Prob. 73PCh. 10 - Prob. 74PCh. 10 - Prob. 75PCh. 10 - Prob. 76PCh. 10 - Prob. 78PCh. 10 - Prob. 79PCh. 10 - Prob. 80PCh. 10 - Prob. 81PCh. 10 - Prob. 82PCh. 10 - Prob. 83PCh. 10 - Prob. 84P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY