Elements of Electromagnetics
Elements of Electromagnetics
7th Edition
ISBN: 9780190698669
Author: Sadiku
Publisher: Oxford University Press
Question
Book Icon
Chapter 10, Problem 59P
To determine

Find the power densities in both media.

Expert Solution & Answer
Check Mark

Answer to Problem 59P

The power densities in medium-1 and medium-2 are 38.197cos2(ωt1.2z)az13.75cos2(ωt+1.2z)azW/m2_ and 24.46cos2(ωt0.3z)azW/m2_, respectively.

Explanation of Solution

Calculation:

Write the expression for incident electric field in medium-1.

Ei=60cos(ωtβ1z)axV/m        (1)

Consider the expression for phase constant β1 in medium-1.

β1=ωμε

Rewrite the expression for the given data.

β1=ωμo(16εo) {μ=μoε=16εo}

Substitute 90Mrad/s for ω, 4π×107H/m for μo, and 10936πF/m for εo.

β1=(90Mrad/s)(4π×107H/m)(16)(10936πF/m)=(90×106)(43×108)rad/m=1.2rad/m

Substitute 1.2rad/m for β1 in Equation (1).

Ei=60cos(ωt1.2z)axV/m

Consider the expression to find the total electric field in medium-1.

E1=Ei+Er        (2)

Here,

Er is the reflected electric field.

Consider the expression for reflected electric field in medium-1.

Er=Erocos(ωt+1.2z)axV/m        (3)

Here,

Ero is the magnitude of reflected electric field at z=0.

Consider the expression for reflected electric field at z=0.

Ero=ΓEio        (4)

Here,

Eio is the magnitude of incident electric field at z=0, which is 60V/m, and

Γ is the reflection coefficient.

Write the expression to find the reflection coefficient.

Γ=η2η1η2+η1        (5)

Here,

η1 is the intrinsic impedance for medium-1 and

η2 is the intrinsic impedance for medium-2.

As medium-2 is free space, the intrinsic impedance is 120πΩ.

η2=120πΩ

Find the intrinsic impedance for medium-1.

η1=με=μo16εo {μ=μoε=16εo}=14μoεo=14(120πΩ) {μoεo120πΩ}

η1=30πΩ

Substitute 30πΩ for η1 and 120πΩ for η2 in Equation (5).

Γ=120πΩ30πΩ120πΩ+30πΩ=35

Substitute 35 for Γ and 60V/m for Eio in Equation (4).

Ero=(35)(60V/m)=36V/m

Substitute 36V/m for Ero in Equation (3).

Er=36cos(ωt+1.2z)axV/m

Consider the expression to find the incident magnetic field in medium-1.

Hi=Eioη1cos(ωt1.2z)aHi        (6)

Find the vector aHi.

aHi=ak×aEi=az×ax {aEi=axak=az}=ay {az×ax=ay}

Substitute 60V/m for Eio, 30πΩ for η1, and ay for aHi in Equation (6).

Hi=60V/m30πΩcos(ωt1.2z)ay=0.63661cos(ωt1.2z)ayA/m

Consider the expression to find the reflected magnetic field in medium-1.

Hr=Eroη1cos(ωt+1.2z)aHr        (7)

Find the vector aHr.

aHr=ak×aEr=az×ax {aEr=axak=az}=ay {az×ax=ay}

Substitute 36V/m for Eio, 30πΩ for η1, and ay for aHr in Equation (7).

Hr=36V/m30πΩcos(ωt+1.2z)(ay)=0.38197cos(ωt+1.2z)ayA/m

From Equation (1), the total electric field in medium-1 is the sum of incident and reflected electric fields. Similarly, the total magnetic field in medium-1 is the sum of incident and reflected magnetic fields.

Write the expression to find the power density in medium-1.

P1=Ei×Hi+Er×Hr        (8)

Find the cross product Ei×Hi.

Ei×Hi=|axayaz60cos(ωt1.2z)0000.63661cos(ωt1.2z)0|=((00)ax(00)ay+{[60cos(ωt1.2z)][0.63661cos(ωt1.2z)]0}az)W/m2=38.197cos2(ωt1.2z)azW/m2

Find the cross product Er×Hr.

Er×Hr=|axayaz36cos(ωt+1.2z)0000.38197cos(ωt+1.2z)0|=((00)ax(00)ay+{[36cos(ωt+1.2z)][0.38197cos(ωt+1.2z)]0}az)W/m2=13.75cos2(ωt+1.2z)azW/m2

Substitute 38.197cos2(ωt1.2z)azW/m2 for Ei×Hi and 13.75cos2(ωt+1.2z)azW/m2 for Er×Hr in Equation (8).

P1=(38.197cos2(ωt1.2z)azW/m2)+(13.75cos2(ωt+1.2z)azW/m2)=38.197cos2(ωt1.2z)az13.75cos2(ωt+1.2z)azW/m2

Consider the expression for transmitted electric field in medium-2.

Et=Etocos(ωtβ2z)ax        (9)

Here,

Eto is the magnitude of transmitted electric field at z=0 and

β2 is the phase constant in medium-2.

Consider the expression for phase constant β2 in medium-2.

β2=ωμoεo

Substitute 90Mrad/s for ω, 4π×107H/m for μo, and 10936πF/m for εo.

β2=(90Mrad/s)(4π×107H/m)(10936πF/m)=(90×106)(13×108)rad/m=0.3rad/m

Substitute 0.3rad/m for β2 in Equation (9).

Et=Etocos(ωt0.3z)ax        (10)

Consider the expression to find the magnitude of transmitted electric field at z=0.

Eto=τEio        (11)

Here,

τ is the transmission coefficient.

Consider for the expression for transmission coefficient.

τ=2η2η2+η1

Substitute 120πΩ for η1 and 30πΩ for η2.

τ=(2)(120πΩ)120πΩ+30πΩ=85

Substitute 85 for τ and 60V/m for Eio in Equation (11).

Eto=(85)(60V/m)=96V/m

Substitute 96V/m for Eto in Equation (10).

Et=96cos(ωt0.3z)axV/m

Consider the expression to find the transmitted magnetic field in medium-2.

Ht=Etoη2cos(ωt0.3z)aHt        (12)

Find the vector aHt.

aHt=ak×aEt=az×ax {aEt=axak=az}=ay {az×ax=ay}

Substitute 96V/m for Eto, 120πΩ for η2, and ay for aHt in Equation (12).

Ht=96V/m120πΩcos(ωt0.3z)(ay)=0.25464cos(ωt0.3z)ayA/m

Write the expression to find the power density in medium-2.

P2=Et×Ht=|axayaz96cos(ωt0.3z)0000.25464cos(ωt0.3z)0|=((00)ax(00)ay+{[96cos(ωt0.3z)][0.25464cos(ωt0.3z)]0}az)W/m224.46cos2(ωt0.3z)azW/m2

Conclusion:

Thus, the power densities in medium-1 and medium-2 are 38.197cos2(ωt1.2z)az13.75cos2(ωt+1.2z)azW/m2_ and 24.46cos2(ωt0.3z)azW/m2_, respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Complete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 Zero reference point 7118 1.0005 1.0000 1.252 Bore 6.0000 .7118 Cbore 0.2180 deep (3 holes) 2.6563 1.9445 Figure 26.2 026022 (8lot and Drill Part) (Setup Instructions--- (UNITS: Inches (WORKPIECE NAT'L SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location 054: ' XY 0.0 - Upper Left of Fixture TOP OF PART 2-0 (Tool List ( T02 0.500 IN 4 FLUTE FLAT END MILL #4 CENTER DRILL Dashed line indicates- corner of original stock ( T04 T02 3.000 diam. slot 0.3000 deep. 0.3000 wide Intended toolpath-tangent- arc entry and exit sized to programmer's judgment…
A program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill).
We consider a laminar flow induced by an impulsively started infinite flat plate. The y-axis is normal to the plate. The x- and z-axes form a plane parallel to the plate. The plate is defined by y = 0. For time t <0, the plate and the flow are at rest. For t≥0, the velocity of the plate is parallel to the 2-coordinate; its value is constant and equal to uw. At infinity, the flow is at rest. The flow induced by the motion of the plate is independent of z. (a) From the continuity equation, show that v=0 everywhere in the flow and the resulting momentum equation is მu Ət Note that this equation has the form of a diffusion equation (the same form as the heat equation). (b) We introduce the new variables T, Y and U such that T=kt, Y=k/2y, U = u where k is an arbitrary constant. In the new system of variables, the solution is U(Y,T). The solution U(Y,T) is expressed by a function of Y and T and the solution u(y, t) is expressed by a function of y and t. Show that the functions are identical.…

Chapter 10 Solutions

Elements of Electromagnetics

Ch. 10.10 - Prob. 11PECh. 10.10 - Prob. 12PECh. 10.11 - Prob. 13PECh. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - Prob. 14PCh. 10 - Prob. 15PCh. 10 - Prob. 16PCh. 10 - Prob. 17PCh. 10 - Prob. 18PCh. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Prob. 28PCh. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - Prob. 59PCh. 10 - Prob. 60PCh. 10 - Prob. 61PCh. 10 - Prob. 62PCh. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - Prob. 66PCh. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - Prob. 71PCh. 10 - Prob. 72PCh. 10 - Prob. 73PCh. 10 - Prob. 74PCh. 10 - Prob. 75PCh. 10 - Prob. 76PCh. 10 - Prob. 78PCh. 10 - Prob. 79PCh. 10 - Prob. 80PCh. 10 - Prob. 81PCh. 10 - Prob. 82PCh. 10 - Prob. 83PCh. 10 - Prob. 84P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY