Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137443000
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: PEARSON+
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 59GP

* You attach a 1.6-kg object to a spring, pull it down 0.12 m from the equilibrium position, and let it vibrate. You find that it takes 5.0 s for the object to complete 10 vibrations. Make a list of physical quantities that you can determine about the motion of the object and determine five of them.

Blurred answer
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 10 Solutions

Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)

Ch. 10 - 3. What does it mean if the period of an object’s...Ch. 10 - 4. What is the period of the kinetic or the...Ch. 10 - 5. A cart undergoing simple harmonic motion has a...Ch. 10 - The period of the object attached to a spring is...Ch. 10 - You have a simple harmonic oscillator. Where is...Ch. 10 - You have a simple harmonic oscillator. Where is...Ch. 10 - Which of the following arguments can be used to...Ch. 10 - 10. (a) Give three common examples of vibrational...Ch. 10 - An object of known mass hangs at the end of a...Ch. 10 - Describe two different ways to estimate the spring...Ch. 10 - You have a small metal ball attached to a 1.0-m...Ch. 10 - 14. A pendulum clock is running too fast. Explain...Ch. 10 - What simplifications were used to derive the...Ch. 10 - A pendulum clock is moved from the Mississippi...Ch. 10 - 17. Oil is often found in a geological structure...Ch. 10 - A pendulum and a block hanging at the end of a...Ch. 10 - Will me frequency of vibration of a swing when you...Ch. 10 - The amplitude of vibration of a swing slowly...Ch. 10 - 23. If you walk with your arms hanging down, they...Ch. 10 - You have a pendulum with a 1-m string. What is the...Ch. 10 - 1. A low-friction cart is placed between two...Ch. 10 - * You have a ball bearing ano a bowl. You let the...Ch. 10 - 3. Draw a sketch of a pendulum indicate the...Ch. 10 - Draw a graph showing the position-versus-time...Ch. 10 - Suppose that at time zero the can attached to the...Ch. 10 - * (a) Sketch a motion diagram and a...Ch. 10 - * Devise a position-versus-time function that...Ch. 10 - * The position of a vibrating object changes as a...Ch. 10 - * The velocity of a vibrating object changes as a...Ch. 10 - 11. * A cart at the end of a spring undergoes...Ch. 10 - 12. ** Refer to the situation in Problem 10.1. (a)...Ch. 10 - You exert a 100-N pull on the end of a spring....Ch. 10 - Metronome You want to make a metronome for music...Ch. 10 - Determine the frequency of vibration of the cart...Ch. 10 - 16. * A spring with a cart at its end vibrates at...Ch. 10 - 17. A cart with mass m vibrating at the end of a...Ch. 10 - 18. * A 300-g apple is placed on a horizontal...Ch. 10 - ** A 2.0-kg cart vibrates at the end of an 18-N/m...Ch. 10 - * What were the main ideas that we used to derive...Ch. 10 - 21. * A spring with a spring constant of 1200 N/m...Ch. 10 - 22. * A person exerts a 15-N force on a cart...Ch. 10 - 23. A spring with spring constant has a 1.4-kg...Ch. 10 - * Proportional reasoning By what factor must we...Ch. 10 - Proportional reasoning By what factor must we...Ch. 10 - 26. Monkey trick at zoo A monkey has a cart with a...Ch. 10 - 27. * A frictionless cart attached to a spring...Ch. 10 - A 2.0-kg cart attached to a spring undergoes...Ch. 10 - 29 * The motion of a cart attached to a horizontal...Ch. 10 - 30. Pendulum clock Shawn wants to build a clock...Ch. 10 - Show that the expression for the frequency of a...Ch. 10 - A pendulum swings with amplitude 0.020 m and...Ch. 10 - 33. * Proportional reasoning You are designing a...Ch. 10 - 34. * Building demolition A 500-kg ball at the end...Ch. 10 - 35. * You have a pendulum with a long string whose...Ch. 10 - * Variations in g The frequency of a person's...Ch. 10 - 37. EST A graph of position versus time for an...Ch. 10 - Determine the period of a 1.3-m-long pendulum on...Ch. 10 - * You have a simple pendulum that consists of a...Ch. 10 - * Equation Jeopardy The following expression...Ch. 10 - 41. * Trampoline vibration When a 60-kg boy sits...Ch. 10 - * Proportional reasoning if you double the...Ch. 10 - 43. * Pendulum on Mars The frequency of a pendulum...Ch. 10 - 44. * bio EST Annoying sound low-frequency...Ch. 10 - 45.** A 1.2-kg block sliding at 6.0 m/s on a...Ch. 10 - 108 kg. The tower sways back and forth at a...Ch. 10 - ** You shoot a 0.050-kg arrow into a 0.50-kg...Ch. 10 - 48. * You have a pendulum whose length is 1.3 m...Ch. 10 - * You hang a 0.10-kg block from a spring, causing...Ch. 10 - 50. * imagine that you have a cart on a spring...Ch. 10 - 51. Describe one situation from everyday life in...Ch. 10 - EST twins on a swing How frequently do you need to...Ch. 10 - 53. (a) Determine the maximum speed of a girl on a...Ch. 10 - Prob. 54PCh. 10 - 55. * Feeling road vibrations in a car if the...Ch. 10 - 57. A spring oscillator and a simple pendulum have...Ch. 10 - * You attach a block (mass m) to a spring (spring...Ch. 10 - * You attach a 1.6-kg object to a spring, pull it...Ch. 10 - 60. * Traveling through Earth A hole is drilled...Ch. 10 - 61. * EST Estimate the effective spring constant...Ch. 10 - *Galileos pendulum The length L of a pendulum is...Ch. 10 - 63. * A 0.5-kg low-friction cart is moving at...Ch. 10 - 103N/m. Determine (a) by how much the ball...Ch. 10 - 67. * A 5.0-g bullet traveling horizontally at an...Ch. 10 - at the start of the swinging. (a) Determine an...Ch. 10 - 70. ** Foucault's pendulum in 1851, the French...Ch. 10 - pushed to the left with initial speed v0....Ch. 10 - Prob. 72RPPCh. 10 - Prob. 73RPPCh. 10 - Prob. 74RPPCh. 10 - Prob. 75RPPCh. 10 - Prob. 76RPPCh. 10 - Prob. 77RPPCh. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY