College Physics 11E Global Edition
College Physics 11E Global Edition
11th Edition
ISBN: 9781337620338
Author: SERWAY/VUILLE
Publisher: CENGAGE Learning Custom Publishing
bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 44P

A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadro’s number of neon atoms at a temperature of 20.0°C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).

(a)

Expert Solution
Check Mark
To determine
The internal energy of the gas.

Answer to Problem 44P

The internal energy of the gas is 1.1×104J .

Explanation of Solution

Given info: The number of moles (n) is 3. The temperature (T) is 20οC . The side of the cube(r) is 20 cm. Molar mass of neon gas is 20.180×103kg/mol .

Formula to calculate the internal energy of the gas is,

U=32nRT

  • R is the gas constant.

Substitute 3 mol for n, 20οC for T and 8.31Jmol1K1 for R in the above equation to get U.

U=32(3mol)(8.31Jmol1K1)(20οC)=32(3mol)(8.31Jmol1K1)(20+273K)=1.1×104J

Conclusion:

The internal energy of the gas is 1.1×104J .

(b)

Expert Solution
Check Mark
To determine
The total translational kinetic energy of the gas ( (KE)total ).

Answer to Problem 44P

The total translational kinetic energy of the gas is 1.1×104J .

Explanation of Solution

Given info: The number of moles (n) is 3. The temperature (T) is 20οC . The side of the cube(r) is 20 cm. Molar mass of neon gas is 20.180×103kg/mol .

The total translational kinetic energy is equal to the internal energy. Therefore,

(KE)total=U

From (a), U=1.1×104J .

Conclusion:

The internal energy of the gas is 1.1×104J .

(c)

Expert Solution
Check Mark
To determine
The average kinetic energy per atom ( (KE)avg ).

Answer to Problem 44P

The average kinetic energy per atom is 6.07×1021J .

Explanation of Solution

Given info: The number of moles (n) is 3. The temperature (T) is 20οC . The side of the cube(r) is 20 cm. Molar mass of neon gas is 20.180×103kg/mol .

Formula to calculate the average kinetic energy per atom is,

(KE)avg=(KE)totalnNA

  • NA is the Avogadro number.

Substitute 1.1×104J for (KE)total , 3 mol for n and 6.02×1023atoms/mol for NA to get (KE)avg .

(KE)avg=1.1×104J(3mol)(6.02×1023atoms/mol)=6.07×1021J

Conclusion:

The average kinetic energy per atom is 6.07×1021J .

(d)

Expert Solution
Check Mark
To determine
The gas pressure.

Answer to Problem 44P

The gas pressure is 9.14×105Pa .

Explanation of Solution

Given info: The number of moles (n) is 3. The temperature (T) is 20οC . The side of the cube(r) is 20 cm. Molar mass of neon gas is 20.180×103kg/mol .

Formula to calculate the gas pressure is,

P=23(nNAV)(KE)avg (I)

  • V is the volume of the cube.

Formula to calculate the volume of the cube is,

V=r3 (II)

From Equations (I) and (II),

P=23(nNAr3)(KE)avg

Substitute 20 cm for r, 6.07×1021J for (KE)avg , 3 mol for n and 6.02×1023atoms/mol for NA to get P.

P=23[(3mol)(6.02×1023atoms/mol)(20cm)3](6.07×1021J)=23[(3mol)(6.02×1023atoms/mol)(20×102m)3](6.07×1021J)=9.14×105Pa

Conclusion:

The gas pressure is 9.14×105Pa .

(e)

Expert Solution
Check Mark
To determine
The gas pressure.

Answer to Problem 44P

The gas pressure is 9.13×105Pa .

Explanation of Solution

Given info: The number of moles (n) is 3. The temperature (T) is 20οC . The side of the cube(r) is 20 cm. Molar mass of neon gas is 20.180×103kg/mol .

From Ideal gas law, the gas pressure is,

P=nRTV (III)

Formula to calculate the volume of the cube is,

V=r3 (IV)

From Equations (III) and (IV),

P=nRTr3

Substitute 20 cm for r, 3 mol for n 20οC for T and 8.31Jmol1K1 for R to get P.

P=(3mol)(8.31Jmol1K1)(20οC)(20cm)3=(3mol)(8.31Jmol1K1)(20+273K)(20×102m)3=9.13×105Pa

Conclusion:

The gas pressure is 9.13×105Pa .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 1.40-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of v₁ = 3.50 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). d m v=0 -D- www (a) Find the distance of compression d (in m). m (b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d). m/s (c) Find the distance D (in m) where the object comes to rest. m (d) What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to…
As shown in the figure, a 0.580 kg object is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the object travels along a frictionless, horizontal surface to point A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the object at the bottom of the track is VA = 13.0 m/s, and the object experiences an average frictional force of 7.00 N while sliding up the track. R (a) What is x? m A (b) If the object were to reach the top of the track, what would be its speed (in m/s) at that point? m/s (c) Does the object actually reach the top of the track, or does it fall off before reaching the top? O reaches the top of the track O falls off before reaching the top ○ not enough information to tell
A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. wwww wwwwww a F x = 0 0 b i (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. ст (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cm

Chapter 10 Solutions

College Physics 11E Global Edition

Ch. 10 - Objects deep beneath the surface of the ocean are...Ch. 10 - A container filled with an ideal gas is connected...Ch. 10 - Why do vapor bubbles in a pot of boiling water get...Ch. 10 - Markings to indicate length are placed on a steel...Ch. 10 - Figure CQ10.9 shows Maxwell speed distributions...Ch. 10 - The air we breathe is largely composed of nitrogen...Ch. 10 - Metal lids on glass jars can often be loosened by...Ch. 10 - Suppose the volume of an ideal gas is doubled...Ch. 10 - An automobile radiator is filled to the brim with...Ch. 10 - Figure CQ10.14 shows a metal washer being heated...Ch. 10 - Prob. 1PCh. 10 - The pressure in a constant-volume gas thermometer...Ch. 10 - Prob. 3PCh. 10 - Death Valley holds the record for the highest...Ch. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - A persons body temperature is 101.6F, indicating a...Ch. 10 - The temperature difference between the inside and...Ch. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - A grandfather clock is controlled by a swinging...Ch. 10 - A pair of eyeglass frames are made of epoxy...Ch. 10 - A spherical steel ball bearing has a diameter of...Ch. 10 - A brass ring of diameter 10.00 cm at 20.0C is...Ch. 10 - A wire is 25.0 m long at 2.00C and is 1.19 cm...Ch. 10 - The density of lead is 1.13 104 kg/m3 at 20.0C....Ch. 10 - The Golden Gate Bridge in San Francisco has a main...Ch. 10 - An underground gasoline tank can hold 1.00 103...Ch. 10 - Show that the coefficient of volume expansion, ,...Ch. 10 - A hollow aluminum cylinder 20.0 cm deep has an...Ch. 10 - A construction worker uses a steel tape to measure...Ch. 10 - The hand in Figure P10.23 is stainless steel...Ch. 10 - The Trans-Alaskan pipeline is 1 300 km long,...Ch. 10 - The average coefficient of volume expansion for...Ch. 10 - The density or gasoline is 7.30 102 kg/m3 at 0C....Ch. 10 - Figure P10.27 shows a circular steel casting with...Ch. 10 - The concrete sections of a certain superhighway...Ch. 10 - A sample of pure copper has a mass of 12.5 g....Ch. 10 - Prob. 30PCh. 10 - One mole of oxygen gas is at a pressure of 6.00...Ch. 10 - A container holds 0.500 m3 of oxygen at an...Ch. 10 - (a) An ideal gas occupies a volume of 1.0 cm3 at...Ch. 10 - An automobile tire is inflated with air originally...Ch. 10 - Prob. 35PCh. 10 - Gas is contained in an 8.00-L vessel at a...Ch. 10 - Prob. 37PCh. 10 - The density of helium gas at 0C is 0 = 0.179...Ch. 10 - An air bubble has a volume of 1.50 cm3 when it is...Ch. 10 - During inhalation, a persons diaphragm and...Ch. 10 - What is the average kinetic energy of a molecule...Ch. 10 - Prob. 42PCh. 10 - Three moles of an argon gas are at a temperature...Ch. 10 - A sealed cubical container 20.0 cm on a side...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - A 7.00-L vessel contains 3.50 moles of ideal gas...Ch. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Inside the wall of a house, an L-shaped section of...Ch. 10 - The active element of a certain laser is made of a...Ch. 10 - A popular brand of cola contains 6.50 g of carbon...Ch. 10 - Prob. 54APCh. 10 - Prob. 55APCh. 10 - A 1.5-m-long glass tube that is closed at one end...Ch. 10 - Prob. 57APCh. 10 - A vertical cylinder of cross-sectional area A is...Ch. 10 - Prob. 59APCh. 10 - A 20.0-L tank of carbon dioxide gas (CO2) is at a...Ch. 10 - A liquid with a coefficient of volume expansion of...Ch. 10 - Before beginning a long trip on a hot day, a...Ch. 10 - Two concrete spans of a 250-m-long bridge are...Ch. 10 - An expandable cylinder has its top connected to a...Ch. 10 - A bimetallic strip of length L is made of two...Ch. 10 - A 250-m-long bridge is improperly designed so that...Ch. 10 - Prob. 67APCh. 10 - Two small containers, each with a volume of 1.00 ...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY