
Concept explainers
(a)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct
The strength of intermolecular forces is,
(a)

Answer to Problem 44E
The compound with highest boiling point is
Explanation of Solution
Identify the compound which has highest boiling point and justify it.
Analyze why the other compounds don’t have the highest boiling point and justify the same.
The compounds other than
The compound with the highest boiling point is identified and the same is justified.
(b)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(b)

Answer to Problem 44E
The compound with lowest freezing point is
Explanation of Solution
Identify the compound which has lowest freezing point and justify it.
The compound with lowest freezing point is
Analyze why the other compounds don’t have the lowest freezing point and justify the same.
The compounds other than
The other compounds
The compound with the lowest boiling point is identified and the same is justified.
(c)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(c)

Answer to Problem 44E
The compound with lowest vapor pressure is
Explanation of Solution
Identify the compound which has lowest vapor pressure and justify it.
The compound
A boiling liquid partly vaporizes and the vaporized molecules do exist in equilibrium with the liquid molecules. The pressure exerted by the vaporized molecules is termed as vapor pressure. Molecules are able to move freely if the intermolecular forces are weak. The more the free movement of molecules the more will be the pressure exerted by them. If the intermolecular forces are strong, the movement of the molecules is restricted to some extent that the pressure exerted by them will be low. Thus increase in the strength of intermolecular forces in a substance decreases its vapor pressure.
Analyze why the other compounds don’t have the lowest vapor pressure and justify the same.
The intermolecular forces exist in them are not of high strength.
In
The compound with the lowest vapor pressure is identified and the same is justified.
(d)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(d)

Answer to Problem 44E
The compound with greatest viscosity is
Explanation of Solution
Identify the compound which has highest viscosity and justify it.
Viscosity of a liquid is its resistance to flow. A liquid is said to be highly viscous if it hardly flows. When the intermolecular forces are strong, the molecules are unable to move freely. The strong hydrogen bonding in the molecules of
Analyze why the other compounds don’t have the highest viscosity and justify the same.
The intermolecular forces exist in them are not of high strength.
The compound with the highest viscosity is identified and the same is justified.
(e)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(e)

Answer to Problem 44E
The compound with greatest heat of vaporization is
Explanation of Solution
Identify the compound which has highest heat of vaporization and justify it.
The compound with highest heat of vaporization is
Analyze why the other compounds don’t have the highest heat of vaporization and justify the same.
The low strength of intermolecular forces in
Unlike
The compound with the highest heat of vaporization is identified and the same is justified.
(f)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(f)

Answer to Problem 44E
The compound with lowest enthalpy of fusion is
Explanation of Solution
Identify the compound which has lowest enthalpy of fusion and justify it.
The compound with lowest enthalpy of fusion is
Analyze why the other compounds don’t have the lowest enthalpy of vaporization and justify the same.
The intermolecular forces in the compounds given except
The compound with the lowest enthalpy of fusion is identified and the same is justified.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY
- Phenol is the starting material for the synthesis of 2,3,4,5,6-pentachlorophenol, known al-ternatively as pentachlorophenol, or more simply as penta. At one time, penta was widely used as a wood preservative for decks, siding, and outdoor wood furniture. Draw the structural formula for pentachlorophenol and describe its synthesis from phenol.arrow_forward12 Mass Spectrometry (d) This unknown contains oxygen, but it does not show any significant infrared absorption peaks above 3000 cm . 59 100- BO 40 Relative Abundance M(102) - 15 20 25 30 35 40 45 50 5 60 65 70 75 80 85 90 95 100 105 mizarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: H HO H HO H HO H H -OH CH2OH Click and drag to start drawing a structure. Х : Darrow_forward
- : Draw the structure of valylasparagine, a dipeptide made from valine and asparagine, as it would appear at physiological pH. Click and drag to start drawing a structure. P Darrow_forwardDraw the Haworth projection of α-L-mannose. You will find helpful information in the ALEKS Data resource. Click and drag to start drawing a structure. : ཊི Х Darrow_forwardDraw the structure of serine at pH 6.8. Click and drag to start drawing a structure. : d كarrow_forward
- Take a look at this molecule, and then answer the questions in the table below it. CH2OH H H H OH OH OH CH2OH H H H H OH H H OH H OH Is this a reducing sugar? yes α β ロ→ロ no ☑ yes Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. O no 0+0 If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. ☐arrow_forwardAnswer the questions in the table below about this molecule: H₂N-CH₂ -C—NH–CH–C—NH–CH—COO- CH3 CH CH3 What kind of molecule is this? 0= CH2 C If you said the molecule is a peptide, write a description of it using 3-letter codes separated ☐ by dashes. polysaccharide peptide amino acid phospolipid none of the above Хarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: CH₂OH C=O HO H H -OH H OH CH₂OH Click and drag to start drawing a structure. : ☐ Х S '☐arrow_forward
- Nucleophilic Aromatic Substitution 22.30 Predict all possible products formed from the following nucleophilic substitution reactions. (a) (b) 9 1. NaOH 2. HCI, H₂O CI NH₁(!) +NaNH, -33°C 1. NaOH 2. HCl, H₂Oarrow_forwardSyntheses 22.35 Show how to convert toluene to these compounds. (a) -CH,Br (b) Br- -CH3 22.36 Show how to prepare each compound from 1-phenyl-1-propanone. 1-Phenyl-1-propanone ہتی. Br. (b) Br (racemic) 22.37 Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid. 22.38 Show reagents and conditions to bring about the following conversions. (a) 9 NH2 8 CO₂H NH2 CO₂Et (d) NO2 NH2 S NH₂ NO2 CHS CHarrow_forwardive the major organic product(s) of each of the following reactions or sequences of reactions. Show all rant stereochemistry. [10 only] A. B. NaN3 1. LiAlH4, ether Br 2. H₂O CH3 HNO3 H₂/Pt H₂SO ethanol C. 0 0 CH3CC1 NaOH NHCCH AICI H₂O . NH₂ CH3CH2 N CH2CH3 + HCI CH₂CH 3 1. LIAIH, THE 2. H₂Oarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





