
(a)
The total torques due to the weight of the hand about the axis of rotation when the time reads
(a)

Answer to Problem 40AP
The total torques due to the weight of the hand about the axis of rotation when the time reads
Explanation of Solution
Given information: The mass of hour hand is
Formula to calculate the net torque produced by the clock’s hand is,
Here,
Formula to calculate the angular speed of the hour hands is,
Substitute
Thus, the angular speed of the hour hand is
Formula to calculate the angular speed of the minute hands is,
Substitute
Thus, the angular speed of the hour hand is
Let take
Write the expression for the angular position of the hour hands at time
Here,
Substitute
Write the expression for the angular position of the minute hands at time
Here,
Substitute
Substitute
Substitute
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
When clock shows time
Substitute
Thus, the net torque is
Conclusion:
Therefore, the total torques due to the weight of the hand about the axis of rotation when the time reads
(b)
The all the time nearest to second when total torque about the axis of rotation is zero by solving the transcendental equation.
(b)

Answer to Problem 40AP
The time corresponding to the zero torque is given as:
Time(hr) | Clock time |
0 | 12:00:00 |
0.515 | 12:30:55 |
0.971 | 12:58:19 |
1.54 | 1:32:31 |
1.95 | 1:57:01 |
2.56 | 2:33:25 |
2.94 | 2:56:29 |
Explanation of Solution
Given information: The mass of hour hand is
From equation (2), the expression for the total torque is given by,
Substitute
Since it is a transcendental equation, solving the equation numerically the values of time comes out to be 0, 0.515, 0.971, 1.54, 1.95……so on.
The time corresponding to the time is given as:
Time(hr) | Clock time |
0 | 12:00:00 |
0.515 | 12:30:55 |
0.971 | 12:58:19 |
1.54 | 1:32:31 |
1.95 | 1:57:01 |
2.56 | 2:33:25 |
2.94 | 2:56:29 |
Conclusion:
Therefore, time corresponding to the zero torque is given as:
Time(hr) | Clock time |
0 | 12:00:00 |
0.515 | 12:30:55 |
0.971 | 12:58:19 |
1.54 | 1:32:31 |
1.95 | 1:57:01 |
2.56 | 2:33:25 |
2.94 | 2:56:29 |
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers with Modern Physics
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





