(a) Solve the following system of equations by LU decomposition without pivoting
(b) Determine the matrix inverse. Check your results by verifying that
(a)

To calculate: The solution of the system of equations given below by LU decomposition without pivoting.
Answer to Problem 3P
Solution:
The solution of the system of equations is
Explanation of Solution
Given:
The system of equations,
Formula used:
(1) The forward substitution equations for L can be expressed as,
(2) The backward substitution equation for U can be expressed as,
Calculation:
Consider the system of equations,
The coefficient
And subtracting the result from equation (2).
Thus, multiply equation (1) by
Now subtract this equation from equation (2),
The coefficient
And subtracting the result from equation (3).
Thus, multiply equation (1) by
Now subtract this equation from equation (3),
Now the set of equations is,
The factors
The coefficient
And subtracting the result from equation (5). Thus, multiply equation (4) by
Now, subtract this equation from equation (5),
The factor
Therefore, the LU decomposition is
Now, to find the solution of the given system:
The forward substitution equations for L can be expressed as,
Solve for
Solve for
Solve for
Thus,
Now, perform backward substitution:
Solve for
Solve for
Solve for
Thus,
(b)

To calculate: The matrix inverse for given system of equations and check the result by verifying that
Answer to Problem 3P
Solution:
The matrix inverse is
Explanation of Solution
Given:
The system of equations,
And the LU decomposition is
Formula used:
(1) The forward substitution equations for L can be expressed as,
(2) The backward substitution equation for U can be expressed as,
Calculation:
Consider the given system of equations:
The matrix [A] is:
The lower and upper triangular matrix after decomposition are given as:
The first column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the first row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine D by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the first column of the inverse matrix as:
Similarly, the second column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the second row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine D by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the second column of the inverse matrix as:
Similarly, the third column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the third row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine D by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the third column of the inverse matrix as:
Thus, the inverse matrix is:
Now, check the result obtained.
Hence, verified.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
Pathways To Math Literacy (looseleaf)
College Algebra (Collegiate Math)
Precalculus
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Intermediate Algebra (13th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- 2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward
- 2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward(read image) (answer given)arrow_forward
- A cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forward
- T₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





