![WebAssign Homework Only for Moaveni's Engineering Fundamentals: An Introduction to Engineering, SI Edition, 6th Edition, [Instant Access]](https://www.bartleby.com/isbn_cover_images/9780357126677/9780357126677_largeCoverImage.gif)
Find the average reaction force for the corresponding time of contact on cushion material.

Answer to Problem 39P
The average reaction force for the corresponding time of contact is calculated and tabulated in Table 1.
Explanation of Solution
Given data:
Weight of the laptop
Laptop is dropped at a height
Formula used:
Formula to determine the average force is,
Here,
m is the mass of the object.
Formula to determine the initial velocity of the laptop right before the floor is,
Here,
g is the acceleration due to gravity.
h is the height at which laptop is dropped.
Formula to determine the mass of the laptop is,
Here,
w is the weight.
g is the acceleration due to gravity.
Calculation:
The cushion material reduces the velocity of the laptop to a final velocity of zero. Therefore,
Substitute
Substitute 22 N for w and
Substitute 0 for
Substitute 0 for
Reduce the equation as follows,
Substitute 0 for
Substitute 0 for
Substitute 0 for
Thus, the average reaction force for the corresponding time of contact is calculated and tabulated in table 1.
Table 1
Time of contact (Seconds) | The average reaction force (N) |
0.01 | 992N |
0.05 | 198N |
0.1 | 99.2 N |
1.0 | 9.92 N |
2.0 | 4.96 N |
Conclusion:
Hence, the average reaction force for the corresponding time of contact is calculated and tabulated.
Want to see more full solutions like this?
Chapter 10 Solutions
WebAssign Homework Only for Moaveni's Engineering Fundamentals: An Introduction to Engineering, SI Edition, 6th Edition, [Instant Access]
- PLease make sure to show all work and all steps for the image find the magnitude and stressesarrow_forwardShowing all work and steps find the magnituded and stress ,arrow_forwardWhat is the value of the influence line for the reaction at support A for the beam shown at 5 m to the right of A? Select the reaction at support B to be the redundant. a. 0 kN b. -0.167 kN c. 0.425 kN d. 1.0 kNarrow_forward
- Determine the force in member AB of the truss shown due to a temperature drop of 25°C in Members AB, BC, and CD and a temperature increase of 60°C in member EF. Use the method of consistent deformations. a. 37.34 k b. 0 k c. 28 k d. 46.67 karrow_forwardWhat is the approximate axial force in girder EF of the frame shown? Use the portal method. a. 32 kN b. 60 kN c. 12 kN d. 20kNarrow_forwardDetermine the vertical reaction at C for the beam shown and support settlements of 1" at B and ¼" at C. a. 27.0 k b. 28.3 k c. 43.7 k d. 21.0 karrow_forward
- What is the horizontal reaction component at D for the frame shown? a. 75.00 kN b. 91.67 kN c. 70.31 kN d. 4.69 kNarrow_forwardFind the vertical reaction at D for the frame shown and a settlement of 50 mm at support D. a. 80.7 kN b. 112.5 kN c. 144.3 kN d. 6.51 kNarrow_forwardDetermine if the W14x 22 beam will safely support a loading of w= 1.5 kip/ft. Theallowable bending stress is oallow = 22 ksi and the allowable shear stress is Tallow = 12 ksi.arrow_forward
- What is the fixed end moment FEMAB for the beam shown with a settlement of 1.2 in. at support B? a. -102.7 ft-k b. -95.2 ft-k c. -307.7 ft-k d. 279.8 ft-karrow_forwardSuggest an optimum footing size and shape (minimum area footing), if the vertical loading (includingthe weight of the footing) is 40 kips, and the soil has the following characteristics: c=200 psf, φ=370,and γ=120.0 lb/ft 3. Constraints of the solution are: the maximum dimension of any side of thefooting is 10 ft, and the depth of embedment is between 2 and 4 ft.arrow_forward15.6 A mountain stream flows over a rocky streambed. Apply the Limerinos and Chezy equations to calculate the discharge. The stream has an intermediate rock size d 84 of 30 cm, an average depth of 2.1 m, a slope of S = 0.0037, and a width of 52 m. In SI units, what is the discharge? a. 85, b. 120, c. 160, d. 240, or e. 410.arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning





