Question
Book Icon
Chapter 10, Problem 39P
To determine

Find the average reaction force for the corresponding time of contact on cushion material.

Expert Solution & Answer
Check Mark

Answer to Problem 39P

The average reaction force for the corresponding time of contact is calculated and tabulated in Table 1.

Explanation of Solution

Given data:

Weight of the laptop (w) is 22 N.

Laptop is dropped at a height (h) is 1m.

Formula used:

Formula to determine the average force is,

Favg=mVfmViΔt (1)

Here,

Δt is the time period.

m is the mass of the object.

Vf is the final velocity of the object.

Vi is the initial velocity of the object.

Formula to determine the initial velocity of the laptop right before the floor is,

Vi=2gh (2)

Here,

g is the acceleration due to gravity.

h is the height at which laptop is dropped.

Formula to determine the mass of the laptop is,

m=wg (3)

Here,

w is the weight.

g is the acceleration due to gravity.

Calculation:

The cushion material reduces the velocity of the laptop to a final velocity of zero. Therefore,

Vf=0

Substitute 9.81ms2 for g and 1 m for h in equation (2).

Vi=2×9.81ms2×1m=19.62m2s2=4.43ms

Substitute 22 N for w and 9.81ms2 for g in equation (3).

m=22N9.81ms2        [1N=kgms2]=2.24Ns2m      [1kg=Ns2m]=2.24kg

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 0.01 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(0.01s)=(0)(9.92kgms)(0.01s)=(9.92kgms)(10.01s)            [1N=kgms2]=992N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 0.05 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(0.05s)

Reduce the equation as follows,

Favg=(0)(9.92kgms)(0.05s)=9.92kgms×10.05s          [1N=kgms2]=198N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 0.1 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(0.1s)=(0)(9.92kgms)(0.1s)=(9.92kgms)(10.1s)                 [1N=kgms2]=99.2N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 1 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(1s)=(0)(9.92kgms)(1s)=(9.92kgms)(11s)                     [1N=kgms2]=9.92N

Substitute 0 for Vf, 2.24 kg for m, 4.43ms for Vi, and 2 s for Δt in equation (1).

Favg=(2.24kg×0)(2.24kg×4.43ms)(2s)=(0)(9.92kgms)(2s)=(9.92kgms)(12s)                  [1N=kgms2]=4.96N

Thus, the average reaction force for the corresponding time of contact is calculated and tabulated in table 1.

Table 1

Time of contact (Seconds)The average reaction force (N)
0.01992N
0.05198N
0.199.2 N
1.09.92 N
2.04.96 N

Conclusion:

Hence, the average reaction force for the corresponding time of contact is calculated and tabulated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
E D (B) (<) 2945 3725 250 2225 Car Port 5000 2500 Pool Area 2 3925 3465 2875 13075 Staff Room Bar Counter 1 GROUND FLOOR PLAN SCALE 1:100 Hallway 3 1560 4125 3125 $685 Laundry & Service Area 5 A Common T&B Kitchen & Dining Arear B Living Area 2425 Terrace E 2 12150 1330 2945 4150 5480 1800 3725 1925 3800 3465 2 3 9150 4125 3575 3925 Terrace Toilet & Bathroom Toilet Bathroom Bedroom 1 Bedroom 2 SECOND FLOOR PLAN SCALE Hallway 1:100 OPEN TO BELOW E B A 3 3725 2150 1330 2945 5480 4150 1925 ⑨ 2 9150 3800 4125 3465 3575 3925 Terrace R Toilet & Bathroom Toilet & Bathroom SECOND FLOOR PLAN SCALE Hallway 1:100 OPEN TO BELOW +
Q2/ In a design of a portable sprinkler system, the following information is given: • • The sprinklers are distributed in a square pattern with radius of the wetted circle of the sprinkler=15 m Consumption rate = 10 mm/day Efficiency of irrigation = 60% Net depth of irrigation (NDI)= 80 mm. Find the following: 1-Sprinkler application rate if HRS = 11. 2-Number of pipes required for irrigation. (50 Marks) 3-Discharge of sprinkler, diameter of nozzle, and the working head pressure if C=0.90. 4-Diameter of the sprinkler pipe for Slope=0. 5-Pressure head at the inlet and at the dead end of the sprinkler pipe for Slope=0. (F² + L²)((SF)² + L²) L² 2L² ≤ D² L² + S² ≤ D² A, = * 1000 S*L ≤D² N W Af m-11-P L' Hf = 1.14*109 * 1.852 * L *F,where c=120 D4.87 Source main pipe 180 m 540 m N 1 1 √m-1 F = im/Nm+1 = + + m+1 2N 6N2 i=1 Nozzle diameter (mm) 3< ds 4.8 4.8< ds 6.4 6.4
Miniatry of Higher scent Research University of Ke Faculty of Engineering Cell Engineering Department 2024-2025 Mid Exam-1 st Attempt Time Date: 17/04/2025 Notes: Answer all questions. Not all figures are to scale. Assume any values if you need them. Q1/ A farm with dimensions and slopes (50 Marks) = shown in the figure below. If you asked to design a border irrigation system and if you know that Net depth of irrigation - 96mm .Manning coefficient = 0.15, Time of work in the farm is 6 hours/day. Design consumption use of water from the crop (ET) 16 mm/day, Width of the agricultural machine equal to 2.5m, Equation of infiltration - D= 12-05 and Efficiency of irrigation= 60%. You can neglect the recession lag time. Find the width and number of the borders, Irrigation interval and time required to irrigate the whole farm, Depth of flow in the inlet of border Number of borders that irrigated in one day and The neglected recession lag time Slope of irrigation % Maximum border width 0-0.1 30…

Chapter 10 Solutions

WebAssign Homework Only for Moaveni's Engineering Fundamentals: An Introduction to Engineering, SI Edition, 6th Edition, [Instant Access]

Ch. 10.4 - Prob. BYGVCh. 10.6 - Prob. 1BYGCh. 10.6 - Prob. 2BYGCh. 10.6 - Prob. 3BYGCh. 10.6 - Prob. 4BYGCh. 10.6 - Explain what is meant by modulus of elasticity and...Ch. 10.6 - Prob. 6BYGCh. 10.6 - Prob. BYGVCh. 10 - Prob. 2PCh. 10 - An astronaut has a mass of 68 kg. What is the...Ch. 10 - Prob. 4PCh. 10 - Former basketball player Shaquille ONeal weighs...Ch. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Calculate the pressure exerted by water on the...Ch. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - If a pressure gauge on a compressed air tank reads...Ch. 10 - Prob. 15PCh. 10 - Calculate the pressure exerted by water on a scuba...Ch. 10 - Prob. 17PCh. 10 - Using the information given in Table 10.4,...Ch. 10 - Bourdon-type pressure gauges are used in thousands...Ch. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Determine the pressure required to decrease the...Ch. 10 - SAE 30 oil is contained in a cylinder with inside...Ch. 10 - Compute the deflection of a structural member made...Ch. 10 - Prob. 28PCh. 10 - A structural member with a rectangular cross...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Calculate the shear modulus for a given...Ch. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Obtain the values of vapor pressures of alcohol,...Ch. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - We have used an experimental setup similar to...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - Prob. 50P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning