COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 37P
To determine
The radius of the balloon at liftoff (
r 1
).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A helium-filled weather balloon has a 0.90 m radius at liftoff where air pressure is 1.0 atm and the temperature is 298 K. When airborne, the temperature is 210 K, and its radius expands to 3.0 m. What is the pressure at the airborne location?
Below the surface of the sea water where the pressure is P=2.45x10^5 Pa and the temperature i 5C, a diver exhales an air bubble having volume of 1cm^3. If the surface temperature of the sea is 20C. What is the volume of the bubble just before it breaks the surface? Assume air in the bubble to be an ideal gas.
A spherical weather balloon is designed to inflate to a maximum diameter of 6.0 m at its working altitude, where the air pressure is 0.370 atm and the temperature is 189.0 K. If the balloon is filled at atmospheric pressure and temperature 264.0 K, what is its radius at lift-off?
Chapter 10 Solutions
COLLEGE PHYSICS,V.2
Ch. 10.1 - Prob. 10.1QQCh. 10.3 - If you quickly plunge a room-temperature mercury...Ch. 10.3 - If you are asked to make a very sensitive glass...Ch. 10.3 - Two spheres are made of the same metal and have...Ch. 10.3 - Prob. 10.5QQCh. 10.5 - Prob. 10.6QQCh. 10 - (a) Why does an ordinary glass dish usually break...Ch. 10 - A sealed container contains a fixed volume of a...Ch. 10 - Some thermometers are made of a mercury column in...Ch. 10 - Prob. 4CQ
Ch. 10 - Objects deep beneath the surface of the ocean are...Ch. 10 - A container filled with an ideal gas is connected...Ch. 10 - Why do vapor bubbles in a pot of boiling water get...Ch. 10 - Markings to indicate length are placed on a steel...Ch. 10 - Figure CQ10.9 shows Maxwell speed distributions...Ch. 10 - The air we breathe is largely composed of nitrogen...Ch. 10 - Metal lids on glass jars can often be loosened by...Ch. 10 - Suppose the volume of an ideal gas is doubled...Ch. 10 - An automobile radiator is filled to the brim with...Ch. 10 - Figure CQ10.14 shows a metal washer being heated...Ch. 10 - Prob. 1PCh. 10 - The pressure in a constant-volume gas thermometer...Ch. 10 - Prob. 3PCh. 10 - Death Valley holds the record for the highest...Ch. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - A persons body temperature is 101.6F, indicating a...Ch. 10 - The temperature difference between the inside and...Ch. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - A grandfather clock is controlled by a swinging...Ch. 10 - A pair of eyeglass frames are made of epoxy...Ch. 10 - A spherical steel ball bearing has a diameter of...Ch. 10 - A brass ring of diameter 10.00 cm at 20.0C is...Ch. 10 - A wire is 25.0 m long at 2.00C and is 1.19 cm...Ch. 10 - The density of lead is 1.13 104 kg/m3 at 20.0C....Ch. 10 - The Golden Gate Bridge in San Francisco has a main...Ch. 10 - An underground gasoline tank can hold 1.00 103...Ch. 10 - Show that the coefficient of volume expansion, ,...Ch. 10 - A hollow aluminum cylinder 20.0 cm deep has an...Ch. 10 - A construction worker uses a steel tape to measure...Ch. 10 - The hand in Figure P10.23 is stainless steel...Ch. 10 - The Trans-Alaskan pipeline is 1 300 km long,...Ch. 10 - The average coefficient of volume expansion for...Ch. 10 - The density or gasoline is 7.30 102 kg/m3 at 0C....Ch. 10 - Figure P10.27 shows a circular steel casting with...Ch. 10 - The concrete sections of a certain superhighway...Ch. 10 - A sample of pure copper has a mass of 12.5 g....Ch. 10 - Prob. 30PCh. 10 - One mole of oxygen gas is at a pressure of 6.00...Ch. 10 - A container holds 0.500 m3 of oxygen at an...Ch. 10 - (a) An ideal gas occupies a volume of 1.0 cm3 at...Ch. 10 - An automobile tire is inflated with air originally...Ch. 10 - Prob. 35PCh. 10 - Gas is contained in an 8.00-L vessel at a...Ch. 10 - Prob. 37PCh. 10 - The density of helium gas at 0C is 0 = 0.179...Ch. 10 - An air bubble has a volume of 1.50 cm3 when it is...Ch. 10 - During inhalation, a persons diaphragm and...Ch. 10 - What is the average kinetic energy of a molecule...Ch. 10 - Prob. 42PCh. 10 - Three moles of an argon gas are at a temperature...Ch. 10 - A sealed cubical container 20.0 cm on a side...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - A 7.00-L vessel contains 3.50 moles of ideal gas...Ch. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Inside the wall of a house, an L-shaped section of...Ch. 10 - The active element of a certain laser is made of a...Ch. 10 - A popular brand of cola contains 6.50 g of carbon...Ch. 10 - Prob. 54APCh. 10 - Prob. 55APCh. 10 - A 1.5-m-long glass tube that is closed at one end...Ch. 10 - Prob. 57APCh. 10 - A vertical cylinder of cross-sectional area A is...Ch. 10 - Prob. 59APCh. 10 - A 20.0-L tank of carbon dioxide gas (CO2) is at a...Ch. 10 - A liquid with a coefficient of volume expansion of...Ch. 10 - Before beginning a long trip on a hot day, a...Ch. 10 - Two concrete spans of a 250-m-long bridge are...Ch. 10 - An expandable cylinder has its top connected to a...Ch. 10 - A bimetallic strip of length L is made of two...Ch. 10 - A 250-m-long bridge is improperly designed so that...Ch. 10 - Prob. 67APCh. 10 - Two small containers, each with a volume of 1.00 ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using the approximation v1v1+v f(v)dvf(v1)v for small v , estimate the fraction of nitrogen molecules at a temperature of 3.00102 K that have speeds between 290 m/s and 291 m/s.arrow_forwardConsider the Maxwell-Boltzmann distribution function plotted in Problem 28. For those parameters, determine the rms velocity and the most probable speed, as well as the values of f(v) for each of these values. Compare these values with the graph in Problem 28. 28. Plot the Maxwell-Boltzmann distribution function for a gas composed of nitrogen molecules (N2) at a temperature of 295 K. Identify the points on the curve that have a value of half the maximum value. Estimate these speeds, which represent the range of speeds most of the molecules are likely to have. The mass of a nitrogen molecule is 4.68 1026 kg. Equation 20.18 can be used to find the rms velocity given the temperature, Boltzmanns constant, and the mass of the atom or molecule. The mass of a nitrogen molecule is 4.68 1026 kg. vrms=3kBTm=3(1.381023J/K)4.681026kg=511m/s Using the results of Problem 28 and the rms velocity, we can calculate the value of f(v). f(vrms) = (3.11 108)(511)2 e(5.75106(511)2) = 0.00181 The most probable speed, for which this function has its maximum value, is given by Equation 20.20. vmp=2kBTm=2(1.381023J/K)(295K)4.681026kg=417m/s f(vmp) = (3.11108)(417)2 e(5.75106(417)2) = 0.00199 We plot these points on the speed distribution. The most probable speed is indeed at the peak of the distribution function. Since the function is not symmetric, the rms velocity is somewhat higher than the most probable speed. Figure P20.29ANSarrow_forwardSome incandescent light bulbs are filled with argon, because it is an inert gas.An argon atom has a mass of 6.63 ×10−26×10-26 kg. What is the rms speed, in meters per second, for argon atoms near the filament, assuming their temperature is 2250 K?arrow_forward
- Average atomic and molecular speed ( v rms) are large, even at low temperatures. What is v rms (in m/s) for helium atoms at 8.00 K, just four degrees above helium's liquefaction temperature?arrow_forwardA mass m of helium gas is contained in a container of constant volume V, with a pressure P and absolute (Kelvin) temperature T at the start. More helium is added, increasing the total mass of helium gas to 3 m. The temperature is found to be 2T after this addition. In terms of the initial pressure P, what is the final gas pressure?arrow_forwardA spherical weather balloon is designed to inflate to a maximum diameter of 17.0 m at its working altitude, where the air pressure is 0.380 atm and the temperature is 194.0 K. If the balloon is filled at atmospheric pressure and temperature 293.0 K, what is its radius at lift-off? Treat the gas as an ideal gas. (Units: m)arrow_forward
- The density of helium gas at 0°C is po = 0.179 kg/m³. The temperature is then raised to T = 160°C, but the pressure is kept constant. Assuming that helium is an ideal gas, calculate the new density p, of the gas. kg/m³arrow_forwardOxygen (O2, with molar mass 32.0 g/mol) gas at 269 K and 1.02 atm is confined to a cubical container 9.50 cm on a side. Calculate ΔUg/Kavg, where ΔUg is the change in the gravitational potential energy of an oxygen molecule falling the height of the box and Kavg is the molecule's average translational kinetic energy.arrow_forwardThe best laboratory vacuum has a pressure of about 1.00 * 10-18 atm, or 1.01 * 10-13 Pa. How many gas molecules are there per cubic centimeter in such a vacuum at 293 K?arrow_forward
- Two moles of nitrogen gas are contained in an enclosed cylinder with a movable piston at a temperature of 250 K, and the pressure is 1.10 x 10 N/m, If a half a mole of the gas leaks out, what is the new pressure assuming that the temperature and volume are maintained constant? (R- 8.31 J/mol-K) 1.80 x 10° N/m2 1.20 x 10° N/m2 78 x 10 N/m2 825x 10 N/m? $ 4 10 7 3 E R T Y] Q F G H D C B NI command つ のarrow_forwardAn air bubble has a volume of 1.55 cm3 when it is released by a submarine 105 m below the surface of a lake. What is the volume of the bubble when it reaches the surface? Assume the temperature and the number of air molecules in the bubble remain constant during its ascent.arrow_forwardA particle on the surface of the Earth can "escape" the Earth's gravitation and continue to move away from the Earth forever, if it has a sufficient speed (called the escape speed). (a) Determine the escape speed (in m/s) if the particle is an oxygen molecule. Use 6.37 x 106 m for radius of the Earth. m/s (b) Determine the temperature (in K) at which the rms speed of the oxygen molecule is 13 times the escape speed. T = K (c) What If? The Universe is composed of 75% hydrogen and 25% helium by mass, yet these gases are not found in the Earth's atmosphere. Calculate the temperatures (in K) for which the minimum escape kinetic energy is nine times the average kinetic energy of hydrogen (H₂) molecules and helium atoms. K K TH2 THEarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning