An explosion is recorded by two forest rangers, one at a primary station and the other atan outpost 6 kilometers away. The ranger at the primary station hears the explosion 6 seconds before the ranger at the outpost. a. Assuming sound travels at 0.35 kilometer per second, write an equation in standard form that gives all the possible locations of the explosion. Use a coordinate system with the two ranger stations on the x-axis and the midpoint between the stations at the origin. b. Graph the equation that gives the possible locations of the explosion. Show the locations of the ranger stations in your drawing.
An explosion is recorded by two forest rangers, one at a primary station and the other atan outpost 6 kilometers away. The ranger at the primary station hears the explosion 6 seconds before the ranger at the outpost. a. Assuming sound travels at 0.35 kilometer per second, write an equation in standard form that gives all the possible locations of the explosion. Use a coordinate system with the two ranger stations on the x-axis and the midpoint between the stations at the origin. b. Graph the equation that gives the possible locations of the explosion. Show the locations of the ranger stations in your drawing.
Solution Summary: The author explains the equation in the standard form that describes the possible points of explosion when the distance between the two rangers is 6km.
An explosion is recorded by two forest rangers, one at a primary station and the other atan outpost 6 kilometers away. The ranger at the primary station hears the explosion 6 seconds before the ranger at the outpost. a. Assuming sound travels at 0.35 kilometer per second, write an equation in standard form that gives all the possible locations of the explosion. Use a coordinate system with the two ranger stations on the x-axis and the midpoint between the stations at the origin. b. Graph the equation that gives the possible locations of the explosion. Show the locations of the ranger stations in your drawing.
System that uses coordinates to uniquely determine the position of points. The most common coordinate system is the Cartesian system, where points are given by distance along a horizontal x-axis and vertical y-axis from the origin. A polar coordinate system locates a point by its direction relative to a reference direction and its distance from a given point. In three dimensions, it leads to cylindrical and spherical coordinates.
Evaluate the following expression and show your work to support your calculations.
a). 6!
b).
4!
3!0!
7!
c).
5!2!
d). 5!2!
e).
n!
(n - 1)!
Amy and Samiha have a hat that contains two playing cards, one ace and one king. They are playing a game where they randomly pick a card out of the hat four times, with replacement.
Amy thinks that the probability of getting exactly two aces in four picks is equal to the probability of not getting exactly two aces in four picks. Samiha disagrees. She thinks that the probability of not getting exactly two aces is greater.
The sample space of possible outcomes is listed below. A represents an ace, and K represents a king. Who is correct?
Consider the exponential function f(x) = 12x. Complete the sentences about the key features of the graph.
The domain is all real numbers.
The range is y> 0.
The equation of the asymptote is y = 0
The y-intercept is 1
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.