A 120 -ft flight control tower in the shape of a hyperboloid has hyperbolic cross sections perpendicular to the ground. Placing the origin at the bottom and center of the tower, the center of a hyperbolic cross section is 0 , 30 with one focus at 15 10 , 30 and one vertex at 15 , 30 . All units are in feet. a. Write an equation of a hyperbolic cross section through the origin. Assume that there are no restrictions on x or y . b. Determine the diameter of the tower at the base. Round to the nearest foot. c. Determine the diameter of the tower at the top. Round to the nearest foot.
A 120 -ft flight control tower in the shape of a hyperboloid has hyperbolic cross sections perpendicular to the ground. Placing the origin at the bottom and center of the tower, the center of a hyperbolic cross section is 0 , 30 with one focus at 15 10 , 30 and one vertex at 15 , 30 . All units are in feet. a. Write an equation of a hyperbolic cross section through the origin. Assume that there are no restrictions on x or y . b. Determine the diameter of the tower at the base. Round to the nearest foot. c. Determine the diameter of the tower at the top. Round to the nearest foot.
Solution Summary: The author calculates the equation of a hyperbolic cross section through the origin.
A
120
-ft
flight control tower in the shape of a hyperboloid has hyperbolic cross sections perpendicular to the ground. Placing the origin at the bottom and center of the tower, the center of a hyperbolic cross section is
0
,
30
with one focus at
15
10
,
30
and one vertex at
15
,
30
.
All units are in feet.
a. Write an equation of a hyperbolic cross section through the origin. Assume that there are no restrictions on
x
or
y
.
b. Determine the diameter of the tower at the base. Round to the nearest foot.
c. Determine the diameter of the tower at the top. Round to the nearest foot.
A factorization A = PDP 1 is not unique. For A=
7 2
-4 1
1
1
5 0
2
1
one factorization is P =
D=
and P-1
30
=
Use this information with D₁
=
to find a matrix P₁ such that
-
-1 -2
0 3
1
-
- 1
05
A-P,D,P
P1
(Type an integer or simplified fraction for each matrix element.)
Matrix A is factored in the form PDP 1. Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.
30 -1
-
1 0 -1
400
0
0 1
A=
3 4 3
0 1 3
040
3 1 3
0 0
4
1
0
0
003
-1 0 -1
Select the correct choice below and fill in the answer boxes to complete your choice.
(Use a comma to separate vectors as needed.)
A basis for the corresponding eigenspace is {
A. There is one distinct eigenvalue, λ =
B. In ascending order, the two distinct eigenvalues are λ₁
...
=
and 2
=
Bases for the corresponding eigenspaces are {
and ( ), respectively.
C. In ascending order, the three distinct eigenvalues are λ₁ =
=
12/2
=
and 3 = Bases for the corresponding eigenspaces are
{}, }, and {
respectively.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Finding The Focus and Directrix of a Parabola - Conic Sections; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=KYgmOTLbuqE;License: Standard YouTube License, CC-BY