![Connect Access Card For Fundamentals Of Structural Analysis (one Semester Access) 5th Edition](https://www.bartleby.com/isbn_cover_images/9781259820960/9781259820960_largeCoverImage.gif)
Concept explainers
Analyze and find all the reactions of the frame.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Determine the deflection position of AB and BA using the relation;
Determine the deflection position of BC and CB using the relation;
Determine the end moment of each member as shown below;
Apply Equilibrium at joint B;
Apply Equilibrium at joint C;
Solve Equation (1) and (2).
Calculation of end moment of each member as shown below;
Hence, the end moment of member AB is
Hence, the end moment of member BA is
Hence, the end moment of member BC is
Hence, the end moment of member CB is
Hence, the end moment of member BE is
Hence, the end moment of member EB is
Hence, the end moment of member CD is
Hence, the end moment of member DC is
Show the free body diagram of support A, span AB, span BC, span EB, and span DC as in Figure (1).
Consider span AB;
Consider clockwise moment is positive and counterclockwise moment is negative.
Determine the vertical reaction at support B;
Take moment about point A;
Consider upward is positive and downward is negative.
Determine the vertical reaction at A;
Hence, the vertical reaction at A is
Consider span BC;
Determine the vertical reaction at support C;
Take moment about point B;
Determine the vertical reaction at B;
Hence, the total reaction at B is
Consider span BE;
Refer Figure (1),
The vertical reaction of 30.8 kips acts as upward reaction at B.
Determine the vertical reaction at E;
Determine the horizontal reaction E;
Take moment about B;
Determine the horizontal reaction at B;
Consider span CD;
Refer Figure (1),
The vertical reaction 12.2 kips at point C will acts downward reaction at C.
Determine the vertical reaction at E;
Hence, the vertical reaction at D is
Determine the horizontal reaction D;
Take moment about C;
Determine the horizontal reaction at C;
Determine the horizontal force at A and B for span AB;
Want to see more full solutions like this?
Chapter 10 Solutions
Connect Access Card For Fundamentals Of Structural Analysis (one Semester Access) 5th Edition
- Consider a new 1800 MW power plant that burns dry sub-bituminous coal in a PC-wall-fired, wet bottom furnace with plant efficiency of 39%. Use the emission factors in your lecture notes to determine the emission rates of all particulates, PM10, SOx, NOx and CO in ton per year. No gas treatment equipment was installed.arrow_forwardA lignite-fired power plant was designed to produce electricity at a maximum capacity of 750 MW. By average over a year, the plant is operated at 35% plant efficiency and 65% of the design capacity. Assume that the entire amount of sulfur in lignite coal entering the plant is converted to sulfur dioxide (SO2). The power plant is equipped with an 85% efficiency SO2 removal unit. Use the engineering calculation approach and the coal information (dry basis) found in your lecture notes to determine emission rate of SO2 in lb/hr and in lb/BTU input.arrow_forwardAn industry is proposing to construct a new coal-fired power plant that produces 2300 MW electricity with efficiency of 39%. Coal has a heating value of 10,750 Btu/lb, and contains a sulfur content of 2.4%. It is expected that 95% of sulfur will be converted to SO2. The New Source Performance Standards (NSPS) limits the SO2 emission rate from any coal-fired power plants to 1.2 lb/ 106 Btu heat input. Use the engineering calculation approach to determine the followings. a) Coal consumption rate in lb/hr b) SO2 emission rate in lb/hr c) Determine if the newly proposed power plant is required to install a flue gas desulfurization (FGD) process for SO2 removal from the flue gas. What percent SO2 removal is required?arrow_forward
- A stack gas at 1 atm and 440oC contains 1100 ppm NO2. If the stack gas is emitted at the rate of 15,000 m3/min, what is the NO2 emission rate in grams per second?arrow_forwardA distillate fired industrial boiler rated at 60 million BTU/hr uses 2 million gallons per year of 0.25% sulfur distillate. What are its emissions of nitrogen oxides (NOx), SO2 and formaldehyde? Emission factors of air pollutants for distillate combustion in an industrial boiler are given below. NOX Pollutant Emission factor (lb/103 gallon 20 * SO2 142S* PM 10 2 CO 5 VOCs 0.2 Benzene 0.1863 Formaldehyde 1.7261 Cadmium Chromium(VI) *S= %S in fuel 0.0015 0.0002arrow_forward3. Consider a new 1800 MW power plant that burns dry sub-bituminous coal in a PC-wall-fired, wet bottom furnace with plant efficiency of 39%. Use the emission factors in your lecture notes to determine the emission rates of all particulates, PM10, SOx, NOx and CO in ton per year. No gas treatment equipment was installed.arrow_forward
- 1. The particulate emissions were measured from a factory stack. The stack was divided into three sectors with different cross-sectional areas. The measured velocities and particulate concentrations were given below. Sector number 1 2 3 Cross-sectional Stack velocity area (m²) (ft/s) 1.0 60 1.2 45 1.4 55 Particulate concentration (mg/m³) 450 530 610 a) What is the average particulate concentration in mg/m³? b) What are the particulate emissions per unit area in g/m²-s for sector number 1, 2 and 3? c) What are the flow rates of particulates in g/s for sector number 1, 2 and 3?arrow_forwardAn urban county with an area of 1,000 mile² has an estimated 18 million miles of vehicular traffic per day and has a large power plant. The power plant produces 350 MW of electricity at an efficiency of 39%, burning 10,000 Btu/lb coal. The vehicle emission factor for VOCs is 6 grams/mile; the coal-fired boiler emission factor for VOCs is 1.4 lb/ton coal; biogenic emission of VOCs is 0.4 kg/km²-hr on the average. Determine the total emissions of VOCs in tons/day from all sources (mobile, power plant, and biogenic).arrow_forwardFor automobile, gasoline is a complex mixture of relatively volatile hydrocarbon blended for use in spark-ignition engines. Every time fuel is burned, the carbon is converted to carbon dioxide (CO2), the natural end product of combustion. If we approximate the chemical formula for gasoline by the compound octane (C8H18) with a density of 739 grams/liter, the stoichiometric reaction for complete combustion is: C8H18 + 12.5O2 8CO2 + 9H2O Thus, for every mole of C8H18 fuel that is burned, eight moles of CO2 are produced, along with nine moles of water vapor. Estimate the CO2 emission in grams per mile for a car getting 12 km/liter of gasoline.arrow_forward
- The farming plan of steel structure has 30 ft long simply supported beams spaced at 8 ft apart. The beams carry dead loads (D) and live loads (L). The selected beam size is W 18x50. 1) Based on 0.3Fy allowable stress limit due to dead loads only (D), what will be the maximum D load in psf that can be applied to the beams? Ignore beam weight. 2) Using the D load obtained from Part 1 and based on 0.6Fy allowable stress limit due to combined dead loads and live loads, what will be the maximum live load L in psf that can be applied to the beams? 3) If the maximum mid span deflection due to live loads (L) is L/360 ( or 1.0 in in this case), what will be the maximum L load in psf that can be applied to the beams?arrow_forwardFrom two inaccessible but intervisible points A and B, the angles to two triangulation stations C and D were observed as follows: Line AB = 500 m long. Angle CAB = 79 deg 30° Angle DAB = 28 deg 30° Angle DBC = 31 deg 30° Angle DBA = 84 deg 30° Find the distance BC Find the distance BD Find the distance CDarrow_forwardFrom two inaccessible but intervisible points A and B, the angles to two triangulation stations C and D were observed as follows: Line AB is 500 m long. Angle CAB = 79 deg 30° Angle DAB = 28 deg 30° Angle DBC = 31 deg 30° Angle DBA = 84 deg 30° 1. Find the distance BC 2. Find the distance BD 3. Find the distance CDarrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)