EBK ENGINEERING FUNDAMENTALS: AN INTROD
EBK ENGINEERING FUNDAMENTALS: AN INTROD
5th Edition
ISBN: 8220100543401
Author: MOAVENI
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 10, Problem 21P
To determine

Convert the systolic/diastolic of 115/85 mm of Hg into Pa, psi and inH2O.

Expert Solution & Answer
Check Mark

Answer to Problem 21P

The systolic pressure from 115 mmHg to Pa is 15,322 kPa, to psi is 2.2 psi, and to inH2O is 61.42 inH2O.

The diastolic pressure from 85 mmHg to Pa is 11.322 kPa, to psi is 1.64 psi, and to inH2O is 45.27 inH2O.

Explanation of Solution

Given data:

A systolic pressure is 115 mmHg.

A diastolic pressure is 85mmHg.

Formula used:

Formula to determine the gauge pressure is,

P=ρgh (1)

Here,

ρ is the density.

g is the gravitational constant.

h is the height of the fluid column.

Calculation:

Case 1:

Conversion for 115 mm Hg to Pa:

P=115×133.322Pa                                 [1mmHg = 133.322Pa]=15,332Pa=15.322×103Pa=15.322kPa

Conversion for 115 mm Hg to psi:

1 mm of Hg is equal to 0.0193368 psi. Therefore,

P=(115)(0.0193368 psi)=2.22psi

Conversion for 115 mm Hg to inch of water:

Substitute 1000kgm3 for ρ, 15.332 kPa for P, and 9.81ms2 for g in equation (1) to find the height of the fluid column h.

15.322kPa=(1000kgm3)(9.81ms2)(h)h=(15.322kPa)(9810kgm3×ms2)                                    =(15.322kPa)(98101m3×kgms2)                         [1N=1kgms2]               =(15.322kPa)(98101m3×N)

Reduce the equation as follows,

h=(15.322kPa)(98101m×Nm2)                                      [1Pa=1Nm2]=(15.322kPa)(98101m×Pa)=1.56m

Converting the height of fluid column (h=1.56m) of systolic pressure to inch of water as,

P=1.56×39.37in                                        [1m=39.37in]=61.42in.ofH2O

Case 2:

Conversion for 85 mm Hg to Pa:

P=85×133.322Pa                            [1mmHg = 133.322Pa]=11332Pa=11.332×103Pa=11.332kPa

Conversion for 85 mm Hg to psi:

1 mm of Hg is equal to 0.0193368 psi. Therefore,

P=(85)(0.0193368 psi)=1.64psi

Conversion for 85 mm Hg to inch of water:

Substitute 1000kgm3 for ρ, 11.332 kPa for P, and 9.81ms2 for g in equation (1) to find the height of the fluid column h.

11.332kPa=(1000kgm3)(9.81ms2)(h)h=(11,322kPa)(9810kgm3×ms2)                                    =(11,322kPa)(98101m3×kgms2)                        [1N=1kgms2]               =(11.322kPa)(98101m3×N)

Reduce the equation as follows,

h=(11.322kPa)(98101m×Nm2)                              [1Pa=1Nm2]=(11.322kPa)(98101m×Pa)=1.15m

Converting the height of fluid column (h=1.15m) of diastolic pressure to inch of water as,

P=1.15×39.37in                                   [1m=39.37in]=45.27in.ofH2O

Conclusion:

Hence, the conversion for systolic/diastolic of 115/85 mm Hg is explained.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Post-tensioned AASHTO Type II girders are to be used to support a deck with unsupported span equal to 10 meters. Two levels of Grade 250, 10 x 15.2 mm Ø 7-wire strand are used to tension the girders with 5 tendons per level, where the tendons on top stressed before the ones on the bottom. The girder is simply supported at both ends. The anchors are located 100 mm above the neutral axis at the supports while the eccentricity is measured at 400 mm at the midspan. The tendon profile follows a parabolic shape using a rigid metal sheathing. A concrete topping (slab) 130 mm thick is placed above the beam with a total tributary width of 4 meters. Use maximum values for ranges (table values). Assume that the critical section of the beam is at 0.45LDetermine the losses (friction loss, anchorage, elastic shortening, creep, shrinkage, relaxation). Determine the stresses at the top fibers @ critical section before placing a concrete topping, right after stress transfer. Determine the stress at the…
Please solve this question in hand writting step by step with diagram drawing
Solve this question please

Chapter 10 Solutions

EBK ENGINEERING FUNDAMENTALS: AN INTROD

Ch. 10.4 - Prob. BYGVCh. 10.6 - Prob. 1BYGCh. 10.6 - Prob. 2BYGCh. 10.6 - Prob. 3BYGCh. 10.6 - Prob. 4BYGCh. 10.6 - Explain what is meant by modulus of elasticity and...Ch. 10.6 - Prob. 6BYGCh. 10.6 - Prob. BYGVCh. 10 - Prob. 2PCh. 10 - An astronaut has a mass of 68 kg. What is the...Ch. 10 - Prob. 4PCh. 10 - Former basketball player Shaquille ONeal weighs...Ch. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Calculate the pressure exerted by water on the...Ch. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - If a pressure gauge on a compressed air tank reads...Ch. 10 - Prob. 15PCh. 10 - Calculate the pressure exerted by water on a scuba...Ch. 10 - Prob. 17PCh. 10 - Using the information given in Table 10.4,...Ch. 10 - Bourdon-type pressure gauges are used in thousands...Ch. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Determine the pressure required to decrease the...Ch. 10 - SAE 30 oil is contained in a cylinder with inside...Ch. 10 - Compute the deflection of a structural member made...Ch. 10 - Prob. 28PCh. 10 - A structural member with a rectangular cross...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Calculate the shear modulus for a given...Ch. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Obtain the values of vapor pressures of alcohol,...Ch. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - We have used an experimental setup similar to...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - Prob. 50P
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,