![Modern Physics](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_largeCoverImage.gif)
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 1Q
To determine
The basic assumptions of Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein; the difference and similarity among them.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The basic assumptions of Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein with the differences and similarities between them are given below.
Explanation of Solution
Assumptions of Maxwell-Boltzmann distribution are given below.
- Physical properties of particles are same but their position or trajectory is different; it means particles are distinguishable.
- Most probable way to distribute the particles among various energy states is equilibrium distribution that is subjected to constraints of fixed number of particles and fixed total energy.
- There is no limit on number of particles in a state but not more than one particle can lie in a given state at same time because of low density and high temperature of particles.
Assumptions of Fermi-Dirac distribution are given below.
- Particles are indistinguishable.
- Not more than one particle can lie in a given state.
Assumptions of Bose-Einstein distribution are given below.
- Particles are indistinguishable.
- There is no limit on number of particles in a state.
Conclusion:
Thus, the basic assumptions of Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein with the differences and similarities between them are given below.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. A projectile is shot from a launcher at an angle 0,, with an initial velocity
magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a
child's noggin (see Figure 1). The apple is a height y above the tabletop, and a
horizontal distance x from the launcher. Set this up as a formal problem, and solve
for x. That is, determine an expression for x in terms of only v₁, 0, y and g.
Actually, this is quite a long expression. So, if you want, you can determine an
expression for x in terms of v., 0., and time t, and determine another expression for
timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of
t into the expression for x. Your final equation(s) will be called Equation 3 (and
Equation 4).
Draw a phase portrait for an oscillating, damped spring.
A person is running a temperature of 41.0°C. What is the equivalent temperature on the Fahrenheit scale? (Enter your answer to at least three significant figures.)
°F
Chapter 10 Solutions
Modern Physics
Ch. 10 - Prob. 1QCh. 10 - Prob. 2QCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 8PCh. 10 - The light from a heated atomic gas is shifted in...
Ch. 10 - Prob. 10PCh. 10 - To obtain a more clearly defined picture of the...Ch. 10 - Prob. 12PCh. 10 - Prob. 14PCh. 10 - Prob. 15PCh. 10 - Prob. 16PCh. 10 - Prob. 17PCh. 10 - Prob. 18PCh. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 26P
Knowledge Booster
Similar questions
- What is the period of a rock of mass 2.0kg tied to the end of a spring 0.625m long string that hangs in a doorway and has an elastic constant of 40N/m?arrow_forwardGive an example of friction speeding up an object.arrow_forwardWhich is the higher temperature? (Assume temperatures to be exact numbers.) (a) 272°C or 272°F? 272°C 272°F They are the same temperature. (b) 200°C or 368°F? 200°C 368°F They are the same temperature.arrow_forward
- What is the direction of a force vector given by ~v = −6Nˆi − 8Nˆj?arrow_forwardWhat can be said of the position vector of an object far from any influences on its motion?arrow_forward་ Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of acceleration vector a when the object is at position 2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning