Figure 10-20 is a graph of the angular velocity versus time for a disk rotating like a merry-go-round, For a point on the disk rim, rank the instants a , b , c, and d according to the magnitude of the (a) tangential and (b) radial acceleration greatest first. Figure 10-20 Question 1
Figure 10-20 is a graph of the angular velocity versus time for a disk rotating like a merry-go-round, For a point on the disk rim, rank the instants a , b , c, and d according to the magnitude of the (a) tangential and (b) radial acceleration greatest first. Figure 10-20 Question 1
Figure 10-20 is a graph of the angular velocity versus time for a disk rotating like a merry-go-round, For a point on the disk rim, rank the instants a, b, c, and d according to the magnitude of the (a) tangential and (b) radial acceleration greatest first.
Figure 10-20 Question 1
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Expert Solution & Answer
To determine
To rank:
a) the tangential acceleration at given points a, b, c and d.
b) the radial acceleration at given points a, b, c and d.
Answer to Problem 1Q
Solution:
a) Ranking of tangential acceleration at given points is c>a>b=d.
b) Ranking of radial acceleration at given points is b>a=c>d.
Explanation of Solution
1) Concept:
From the slope of the graph we can rank the points according to the tangential acceleration. Then using the relation between radial acceleration and angular velocity we can rank the points according to the radial acceleration.
2) Formulae:
i) atangential=r.α
ii) aradial=ω2.r
3) Given:
i. Graph of angular velocity vs time for a disk rotating like a merry-go-round.
ii. Points a, b, c and d are on the rim of the rotating disk.
4) Calculations:
a) As we know the formula for tangential acceleration as
atangential=r.α
From the graph we can say that α is the slope of the ω vs time graph. The radius of the disk is same for all cases, so the value of tangential acceleration depends on angular acceleration. The slope is high at point c, so angular acceleration is maximum. After that point a has high slope and points b and d have zero slope.
So the ranking is as,
c>a>b=d
b) The formula for radial acceleration is,
aradial=ω2.r
The radius of the disk is same, so the radial acceleration depends on value of ω which can be easily obtained from the graph. So ranking is,
b>a=c>d
Conclusion:
Observing the graph of angular velocity vs time we can find the radial and tangential acceleration of an object.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2
In the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?
No chatgpt pls will upvote
Chapter 10 Solutions
Fundamentals of Physics Extended 10e Binder Ready Version + WileyPLUS Registration Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.