Traffic and Highway Engineering
Traffic and Highway Engineering
5th Edition
ISBN: 9781305156241
Author: Garber, Nicholas J.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 10, Problem 1P
To determine

The fundamental differences between how LOS is determined for the automobile mode compared to human-powered modes.

Expert Solution & Answer
Check Mark

Explanation of Solution

Introduction:

The level of service is a term that is used to measure the quality of motor vehicle traffic service. The level of service is used for the analysis of roadways and intersection. It categorizes traffic flow and quality of the traffic based on some performance, measures such as traffic density, congestion, and speed.

For the automobile mode, LOS is computed by calculating the level of service at each lane group, intersections, and intersection approach. These are known as a control delay. Control delay is based on the performance measures of the traffic which are determined on the field.

The lane group level of service is calculated by considering both control delay, as well as volume to capacity ratio. But at the intersections, it is calculated only by considering the control delay. Control delay does not represent the consumption of fuel, and the travel time loss.

For the human-powered modes, the LOS is determined by considering the factors that can be described as either performance measures, such as pedestrian delay, and indicator of intersection characteristics as pedestrian corner circulation area, etc.

Conclusion:

Thus, for the automobile mode, LOS is computed by calculating the level of service at each lane group, intersection approach, and at intersections, and for the human-powered modes, the level of service is calculated by considering the pedestrian delay, pedestrian corner circulation area, etc.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A fully embeded precast, prestressed concrete pile is 12 m long and is driven into homogeneous layer of sand. The pile is square in cross section, with sides measuring 305 mm. The dry unit weight of sand is 16.8 kN/m, and the average effective soil friction angle is 35°. The allowable working load is 338 kN. If 240 kN is contributed by the frictional resistance and 98 kN is from the point load, determine the elastic settlement of the pile. Use Ep 21 x 10 kN/m², E, 30000 kN/m², and μ-0.3.
A 15 in. x 26 in. rectangular RC beam (shown in figure below) supports a service uniform deadload of 1.3 kip/ft and a service uniform live load of 1.6 kip/ft. The dead load includes the beam’sself-weight. Design the reinforcement required for maximum moments and show the design insketches. Use f c ’ = 4,000 psi and f y = 60,000 psi. The beam is used in an open parking garage andis exposed to weather.a. Find factored maximum bending moments.b. Design for max. negative moment.c. Design for max. positive moment.Hint: Assume an initial beam shape (b, d), then solve for the needed reinforcements at the maximumnegative and positive factored bending mome
A structure is an intersecting hip roof with the main hip roof outside dimensions being 73 ft long and the width being 30 ft wide. The intersection portion extends 20 ft beyond the 30-ft side, and the intersecting portion is 20 ft wide. The overhang is 2 ft 6 in. and the slope is 5:12. The rafters are 16 in. on center. Based on the information provided, what is the total length of the common rafters in linear feet?
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Text book image
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,