
Physics
7th Edition
ISBN: 9780321929013
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 1OQ
To determine
Which container has the largest pressure at the bottom if all of them hold the same volume of water.
Expert Solution & Answer

Answer to Problem 1OQ
Solution:
Option: d
Explanation of Solution
Gauge pressure P at the bottom of the container is given by,
Where height of column of water inside the container
acceleration due to gravity
density of water
So, the pressure at the bottom of the container depends only on the vertical height of water inside it. is maximum for the fourth container.
Therefore, fourth container has the largest pressure at the bottom.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Make sure to draw a sketch and a free body diagram. DO NOT give me examples but ONLY the solution
Make sure to draw a sketch AND draw a Free body diagram
P
-3 ft
3 ft.
O
A
B
1.5 ft
Do
1.5 ft
✓
For the frame and loading shown, determine the magnitude of the reaction at C (in
lb) if P = 55 lb. (Hint: Use the special cases: Two-force body and Three-force body.)
Chapter 10 Solutions
Physics
Ch. 10 - Prob. 1OQCh. 10 - 2. Two balloons are tied and hang with their...Ch. 10 - Prob. 1QCh. 10 - Prob. 2QCh. 10 - Prob. 3QCh. 10 - An ice cube floats in a glass of water filled to...Ch. 10 - Will an ice cube float in a glass of alcohol? Why...Ch. 10 - A submerged can of Coke® will sink, but a can of...Ch. 10 - Why don’t ships made of iron sink?Ch. 10 - A barge filled high with sand approaches a low...
Ch. 10 - Prob. 9QCh. 10 - Will an empty balloon have precisely the same...Ch. 10 - Prob. 11QCh. 10 - Prob. 12QCh. 10 - Prob. 13QCh. 10 - A tall Styrofoam cup is filled with water. Two...Ch. 10 - Prob. 15QCh. 10 - 16. Two ships moving in parallel paths close to...Ch. 10 - Prob. 17QCh. 10 - Prob. 18QCh. 10 - Prob. 19QCh. 10 - Prob. 20QCh. 10 - Prob. 21QCh. 10 - Prob. 1MCQCh. 10 - Prob. 2MCQCh. 10 - Prob. 3MCQCh. 10 - Prob. 4MCQCh. 10 - Prob. 5MCQCh. 10 - Prob. 6MCQCh. 10 - Prob. 7MCQCh. 10 - Prob. 8MCQCh. 10 - 9. As water flows from a low elevation to a higher...Ch. 10 - Prob. 10MCQCh. 10 - Prob. 11MCQCh. 10 - Prob. 12MCQCh. 10 - Prob. 1PCh. 10 - What is the approximate mass of air in a living...Ch. 10 - If you tried to smuggle gold bricks by filling...Ch. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - If 4.0 L of antifreeze solution (specific gravity...Ch. 10 - Prob. 7PCh. 10 - Estimate the pressure needed to raise a column of...Ch. 10 - Prob. 9PCh. 10 - 10. (I) What is the difference in blood pressure...Ch. 10 - (I) (a) Calculate the total force of the...Ch. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - The maximum gauge pressure in a hydraulic lift is...Ch. 10 - The gauge pressure in each of the four tires of an...Ch. 10 - (a) Determine the total force and the absolute...Ch. 10 - Prob. 17PCh. 10 - Prob. 18PCh. 10 - Prob. 19PCh. 10 - Determine the minimum gauge pressure needed in the...Ch. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - What fraction of a piece of iron will be submerged...Ch. 10 - A geologist finds that a Moon rock whose mass is...Ch. 10 - Prob. 25PCh. 10 - (II) A spherical balloon has a radius of 7.15 m...Ch. 10 - Prob. 27PCh. 10 - Calculate the true mass (in vacuum) of a piece of...Ch. 10 - 29. (II) Because gasoline is less dense than...Ch. 10 - A scuba diver and her gear displace a volume of...Ch. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - An undersea research chamber is spherical with an...Ch. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - A scuba tank, when fully submerged, displaces 15.7...Ch. 10 - Prob. 40PCh. 10 - A 12-cm-radius air duct is used to replenish the...Ch. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - What gauge pressure in the water pipes is...Ch. 10 - A 5/8— in. (inside) diameter garden hose is used...Ch. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Prob. 51PCh. 10 - What is the lift (in newtons) due to Bernoulli's...Ch. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - Prob. 59PCh. 10 - Prob. 60PCh. 10 - Prob. 61PCh. 10 - Prob. 62PCh. 10 - Prob. 63PCh. 10 - Assuming a constant pressure gradient, if blood...Ch. 10 - Prob. 65PCh. 10 - Prob. 66PCh. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - If the base of an insect’s leg has a radius of...Ch. 10 - Prob. 71PCh. 10 - Prob. 72PCh. 10 - Prob. 73GPCh. 10 - Intravenous transfusions are often made under...Ch. 10 - Prob. 75GPCh. 10 - Prob. 76GPCh. 10 - Prob. 77GPCh. 10 - Prob. 78GPCh. 10 - Prob. 79GPCh. 10 - Prob. 80GPCh. 10 - Prob. 81GPCh. 10 - Prob. 82GPCh. 10 - Prob. 83GPCh. 10 - Prob. 84GPCh. 10 - Prob. 85GPCh. 10 - Prob. 86GPCh. 10 - Prob. 87GPCh. 10 - Prob. 88GPCh. 10 - Four lawn sprinkler heads are fed by a...Ch. 10 - Prob. 90GPCh. 10 - Prob. 91GPCh. 10 - Prob. 92GPCh. 10 - Prob. 93GPCh. 10 - Prob. 94GPCh. 10 - Prob. 95GPCh. 10 - Prob. 96GPCh. 10 - Prob. 97GPCh. 10 - Prob. 98GPCh. 10 - Prob. 99GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A convex mirror (f.=-6.20cm) and a concave minor (f2=8.10 cm) distance of 15.5cm are facing each other and are separated by a An object is placed between the mirrors and is 7.8cm from each mirror. Consider the light from the object that reflects first from the convex mirror and then from the concave mirror. What is the distance of the image (dia) produced by the concave mirror? cm.arrow_forwardAn amusement park spherical mirror shows park spherical mirror shows anyone who stands 2.80m in front of it an upright image one and a half times the person's height. What is the focal length of the minor? m.arrow_forwardAn m = 69.0-kg person running at an initial speed of v = 4.50 m/s jumps onto an M = 138-kg cart initially at rest (figure below). The person slides on the cart's top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is 0.440. Friction between the cart and ground can be ignored. (Let the positive direction be to the right.) m M (a) Find the final velocity of the person and cart relative to the ground. (Indicate the direction with the sign of your answer.) m/s (b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (Indicate the direction with the sign of your answer.) N (c) How long does the friction force act on the person? S (d) Find the change in momentum of the person. (Indicate the direction with the sign of your answer.) N.S Find the change in momentum of the cart. (Indicate the direction with the sign of your answer.) N.S (e) Determine the displacement of the…arrow_forward
- Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forward
- Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forward
- The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY