Concept explainers
(a)
Delineate the basic ideas behind the chi-square test of independence.
Define a
Provide the null and alternative hypotheses.
Explain how the test statistic is constructed.
Give the basic assumptions that underlie the application of the chi-square distribution.
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Chi-square test of independence:
A single simple random sampling is done with each individual being classified based on the two categorical variables. Then, the hypothesis testing is carried out to check whether there is any relationship between the two categorical variables. This test is called chi-square test of independence.
Contingency tables:
The data from the two variables of a population are known as bivariate data and the frequency distribution for the bivariate data is known as the contingency table.
The test hypotheses are given below:
H0: The variables are independent.
H1: The variables are not independent.
Test statistic for the chi-square test of independence:
Where, the sum is over all the cells in the contingency table.
R= number of rows in a contingency table.
C= number of columns in a contingency table.
E= expected frequency.
For each cell, the value of the expected frequency is obtained as given below:
The basic assumptions underlie the application of the chi-square as given below:
In order to apply the chi-square distribution, the
(b)
Delineate the basic ideas behind the chi-square test of goodness of fit.
Provide the null and alternative hypotheses.
Explain how the test statistic is constructed.
Discuss and summarize the similarities between the tests of independence and tests of goodness of fit.
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Chi-square test of goodness of fit:
The test of goodness of fit enables people to see how well does a specific (theoretical) distribution fits the observed data. Then, the hypothesis testing is carried out to check whether a frequency distribution follows a claimed distribution or not.
Chi-square test of goodness of fit is a test that provides conformation between the observed frequencies (Oi) the expected frequencies (Ei) for several categories.
In a goodness of fit, the following is obtained:
O= Observed frequency count of a category.
E= Expected frequency of a category.
The value of the expected frequency will be as given below:
The test hypotheses are given below:
H0: The population fits the specified distribution of categories.
H1: The population has a different distribution.
Test statistic for the chi-square test of goodness of fit:
Where, the sum is over all the cells in the contingency table and k= number of categories.
The basic assumption that underlies the application of the chi-square is as given below:
In order to apply a chi-square distribution, the sample size should be large so that for each cell,
Similarities between the tests of independence and the tests of goodness of fit:
Normally, the chi-square test is used to compare the frequencies of one category variable to the theoretical distribution (test of goodness of fit) and to compare the frequencies of one category variable to the different values of a second categorical variable (test of independence).
Therefore, both tests take a categorical variable to perform the hypothesis.
(c)
Delineate the basic ideas behind the chi-square method of testing and estimating a standard deviation.
Give the basic assumptions that underlie the application of the chi-square distribution.
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
If the standard deviation of a population standard deviation is equal to a specified value, then the chi-square method of testing and estimating a standard deviation is used. It is applicable only when random variable x has a
The basic assumptions that underlie the application of the chi-squareis are given below:
- Sample selected is a random sample.
- The distribution of observation should be approximately normal.
(d)
Delineate the basic ideas behind the chi-square test of homogeneity.
Provide the null and alternative hypotheses.
Explain how the test statistic is constructed.
Give the basic assumptions that underlie the application of the chi-square distribution.
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Chi-square test of homogeneity:
Independent simple random samples are taken from two or more populations, where every individual is being classified based on one categorical variable. Here, the hypothesis testing is done to check whether any homogeneity exists. In other words, the homogeneity tests claim that different populations are from the same proportions of specified characteristics. This test is called the chi-square test of homogeneity.
The test hypotheses are given below:
H0: The proportion of each population sharing specified characteristics is the same for all populations.
H1: The proportion of each population sharing specified characteristics is not the same for all populations.
Test statistic for the chi-square test of independence:
Where, the sum is over all the cells in a contingency table.
R= number of rows in the contingency table.
C= number of columns in the contingency table.
E= expected frequency.
For each cell, the value of the expected frequency is obtained as given below:
The basic assumption that underlies the application of the chi-square is given below:
In order to apply the chi-square distribution, the sample size should be large so that for each cell,
Want to see more full solutions like this?
Chapter 10 Solutions
UNDERSTANDABLE STAT. >PRINT UPGRADE<
- Examine the Variables: Carefully review and note the names of all variables in the dataset. Examples of these variables include: Mileage (mpg) Number of Cylinders (cyl) Displacement (disp) Horsepower (hp) Research: Google to understand these variables. Statistical Analysis: Select mpg variable, and perform the following statistical tests. Once you are done with these tests using mpg variable, repeat the same with hp Mean Median First Quartile (Q1) Second Quartile (Q2) Third Quartile (Q3) Fourth Quartile (Q4) 10th Percentile 70th Percentile Skewness Kurtosis Document Your Results: In RStudio: Before running each statistical test, provide a heading in the format shown at the bottom. “# Mean of mileage – Your name’s command” In Microsoft Word: Once you've completed all tests, take a screenshot of your results in RStudio and paste it into a Microsoft Word document. Make sure that snapshots are very clear. You will need multiple snapshots. Also transfer these results to the…arrow_forward2 (VaR and ES) Suppose X1 are independent. Prove that ~ Unif[-0.5, 0.5] and X2 VaRa (X1X2) < VaRa(X1) + VaRa (X2). ~ Unif[-0.5, 0.5]arrow_forward8 (Correlation and Diversification) Assume we have two stocks, A and B, show that a particular combination of the two stocks produce a risk-free portfolio when the correlation between the return of A and B is -1.arrow_forward
- 9 (Portfolio allocation) Suppose R₁ and R2 are returns of 2 assets and with expected return and variance respectively r₁ and 72 and variance-covariance σ2, 0%½ and σ12. Find −∞ ≤ w ≤ ∞ such that the portfolio wR₁ + (1 - w) R₂ has the smallest risk.arrow_forward7 (Multivariate random variable) Suppose X, €1, €2, €3 are IID N(0, 1) and Y2 Y₁ = 0.2 0.8X + €1, Y₂ = 0.3 +0.7X+ €2, Y3 = 0.2 + 0.9X + €3. = (In models like this, X is called the common factors of Y₁, Y₂, Y3.) Y = (Y1, Y2, Y3). (a) Find E(Y) and cov(Y). (b) What can you observe from cov(Y). Writearrow_forward1 (VaR and ES) Suppose X ~ f(x) with 1+x, if 0> x > −1 f(x) = 1−x if 1 x > 0 Find VaRo.05 (X) and ES0.05 (X).arrow_forward
- Joy is making Christmas gifts. She has 6 1/12 feet of yarn and will need 4 1/4 to complete our project. How much yarn will she have left over compute this solution in two different ways arrow_forwardSolve for X. Explain each step. 2^2x • 2^-4=8arrow_forwardOne hundred people were surveyed, and one question pertained to their educational background. The results of this question and their genders are given in the following table. Female (F) Male (F′) Total College degree (D) 30 20 50 No college degree (D′) 30 20 50 Total 60 40 100 If a person is selected at random from those surveyed, find the probability of each of the following events.1. The person is female or has a college degree. Answer: equation editor Equation Editor 2. The person is male or does not have a college degree. Answer: equation editor Equation Editor 3. The person is female or does not have a college degree.arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)