Concept explainers
The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).
1. Conclusion The linear
To conclude: About the linear correlationbetween the numbers of enrolled students and numbers of burglaries.
Answer to Problem 1CQQ
There is no sufficient evidence to support the claim that there is a linear correlation between the numbers of enrolled students and numbers of burglaries.
Explanation of Solution
Given info:
The data shows that the numbers of enrolled students (in thousands) and the numbers of burglaries. The correlation value is 0.499, the critical values at 0.05 level of significance for r is
Calculation:
The hypotheses are given below:
Null hypothesis:
That is, there is no linear correlation betweenthe numbers of enrolled students and the numbers of burglaries.
Alternative hypothesis:
That is, there is a linear correlation between the numbers of enrolled students and the numbers of burglaries.
Conclusion:
The P-value is 0.393 and the level of significance is 0.05.
Here, the P-value is greater than the level of significance.
Hence, the null hypothesis isnot rejected. That is, there is no linear correlation betweenthe numbers of enrolled students and the numbers of burglaries.
The critical value is ±0.878.
Here, the correlation value is 0.499 which lies between the critical values.
Hence, the null hypothesis isnot rejected.
Thus, there is nosufficient evidence to support the claim that there is a linear correlation betweenthe numbers of enrolled students and the numbers of burglaries.
Want to see more full solutions like this?
Chapter 10 Solutions
ELEM.STAT.-MYSTATLAB-ACCESS+EBOOK
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward310015 K Question 9, 5.2.28-T Part 1 of 4 HW Score: 85.96%, 49 of 57 points Points: 1 Save of 6 Based on a poll, among adults who regret getting tattoos, 28% say that they were too young when they got their tattoos. Assume that six adults who regret getting tattoos are randomly selected, and find the indicated probability. Complete parts (a) through (d) below. a. Find the probability that none of the selected adults say that they were too young to get tattoos. 0.0520 (Round to four decimal places as needed.) Clear all Final check Feb 7 12:47 US Oarrow_forwardhow could the bar graph have been organized differently to make it easier to compare opinion changes within political partiesarrow_forward
- 30. An individual who has automobile insurance from a certain company is randomly selected. Let Y be the num- ber of moving violations for which the individual was cited during the last 3 years. The pmf of Y isy | 1 2 4 8 16p(y) | .05 .10 .35 .40 .10 a.Compute E(Y).b. Suppose an individual with Y violations incurs a surcharge of $100Y^2. Calculate the expected amount of the surcharge.arrow_forward24. An insurance company offers its policyholders a num- ber of different premium payment options. For a ran- domly selected policyholder, let X = the number of months between successive payments. The cdf of X is as follows: F(x)=0.00 : x < 10.30 : 1≤x<30.40 : 3≤ x < 40.45 : 4≤ x <60.60 : 6≤ x < 121.00 : 12≤ x a. What is the pmf of X?b. Using just the cdf, compute P(3≤ X ≤6) and P(4≤ X).arrow_forward59. At a certain gas station, 40% of the customers use regular gas (A1), 35% use plus gas (A2), and 25% use premium (A3). Of those customers using regular gas, only 30% fill their tanks (event B). Of those customers using plus, 60% fill their tanks, whereas of those using premium, 50% fill their tanks.a. What is the probability that the next customer will request plus gas and fill the tank (A2 B)?b. What is the probability that the next customer fills the tank?c. If the next customer fills the tank, what is the probability that regular gas is requested? Plus? Premium?arrow_forward
- 38. Possible values of X, the number of components in a system submitted for repair that must be replaced, are 1, 2, 3, and 4 with corresponding probabilities .15, .35, .35, and .15, respectively. a. Calculate E(X) and then E(5 - X).b. Would the repair facility be better off charging a flat fee of $75 or else the amount $[150/(5 - X)]? [Note: It is not generally true that E(c/Y) = c/E(Y).]arrow_forward74. The proportions of blood phenotypes in the U.S. popula- tion are as follows:A B AB O .40 .11 .04 .45 Assuming that the phenotypes of two randomly selected individuals are independent of one another, what is the probability that both phenotypes are O? What is the probability that the phenotypes of two randomly selected individuals match?arrow_forward53. A certain shop repairs both audio and video compo- nents. Let A denote the event that the next component brought in for repair is an audio component, and let B be the event that the next component is a compact disc player (so the event B is contained in A). Suppose that P(A) = .6 and P(B) = .05. What is P(BA)?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt