Interpretation: From the given figure, what happens to the energy of Ball A should be determined.
Concept Introduction: Energy is the ability to do work or produce heat. The law of conservation of energy says that the energy cannot be created or destroyed, but it can be converted from one type to another. It is also called the first law of
Answer to Problem 1ALQ
The energy of the ball A in its original position is distributed to ball B as a result of work and to the surface of the hill through heat.
Explanation of Solution
It is given that on reaching the ground, the ball A stopped moving. Considering the law of conservation of energy, the energy must be conserved. The final position gets raised due to transfer of part of energy from ball A to ball B.
The remaining energy of the ball A gets distributed to the surface of the hill in the form of heat as when it moves down the hill, some amount of the kinetic energy gets transferred to the surface of the hill. Thus, the initial energy of ball A gets transferred to the ball B in the form of work and to the hill’s surface in the form of heat.
Therefore, the energy of the ball A in its original position is distributed to ball B as a result of work and to the surface of the hill through heat.
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
- In Fourier transformed spectroscopya) use a very sensitive monocromador systemb) the detection time is inferior to conventional spectroscopiac) the signal is detected depending on the frequencyd) occurs simultaneously at all frequency intervalsarrow_forwardIf a radiation intensity l0 = 2.5x1010 fotones s-1cm2 results in a dissolución, an absorption of 0.95 will be recorded. What is the percentage of incident radiation and transmission?a) 88.88% b) 5% c) 11.22% d) 95%arrow_forwardIndicate the spectroscopic transmission that requires greater energy radiation. Justification:a) NMR b) vibration c) electronica d) rotationarrow_forward
- After an induced absorption process of an intensity, there are (without population inversion) transitions between:a) vibrational and rotational levels in the infrared region, we obtainb) vibrational levels exclusively in the infrared regionc) vibrational and rotational levels in the microwave regiond) transitions between nuclear spin levels in the radio frequency regionarrow_forwardIn a spontaneous emission process:a) the ground state population decreasesb) the excited state population decreasesc) the non-radiative component is predominantd) the emitted radiation is coherentarrow_forwardFor a molecule there are 3 energy levels A, B and C, where B is an intermediate energy level between A and C. The A → C transition occurs at 480 nm and the B → C transition occurs at 885 nm. Indicate the wavelength at which the A → B transition will occur.arrow_forward
- For a molecule there are three energy levels: A, B and C. If the transition A → B occurs at 1049 nm and the transition B → C occurs at 885 nm, we can say that the wavelength of the transition A → C will occur at approximately:a) 164 nm b) 1934 nm c) 480 nm d) 967 nmarrow_forward: Naming the Alkanes a) Write the IUPAC nomenclature of the compound below b) Draw 4-isopropyl-2,4,5-trimethylheptane, identify the primary, secondary, tertiary, and quaternary carbons. c) Rank pentane, neopentane and isopentane for boiling point. pentane: H3C-CH2-CH2-CH2-CH3 neopentane: CH3 H3C-C-CH3 isopentane: CH3 CH3 H3C-CH2-CH-CH3arrow_forwardAn essential part of the experimental design process is to select appropriate dependent and independent variables. True Falsearrow_forward
- 10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.) Calculate the standard heat of formation of Compound X at 25 °C. Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.arrow_forwardneed help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardInfluence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning