For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. y 2 − 8 y − 8 x + 40 = 0
For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. y 2 − 8 y − 8 x + 40 = 0
Solution Summary: The author explains the nature of the curve y2-8y-8x+40=0, which represents a parabola.
a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola.
b. Graph the curve.
c. Identify key features of the graph. That is,
If the equation represents a circle, identify the center and radius.
If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity.
If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity.
If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry.
EXAMPLE 3
Find
S
X
√√2-2x2
dx.
SOLUTION Let u = 2 - 2x². Then du =
Χ
dx =
2- 2x²
=
信
du
dx, so x dx =
du and
u-1/2 du
(2√u) + C
+ C (in terms of x).
Let g(z) =
z-i
z+i'
(a) Evaluate g(i) and g(1).
(b) Evaluate the limits
lim g(z), and lim g(z).
2-12
(c) Find the image of the real axis under g.
(d) Find the image of the upper half plane {z: Iz > 0} under the function g.
k
(i) Evaluate
k=7
k=0
[Hint: geometric series + De Moivre]
(ii) Find an upper bound for the expression
1
+2x+2
where z lies on the circle || z|| = R with R > 10. [Hint: Use Cauchy-Schwarz]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.