The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s) t + (42.5rad/s 2 ) t 2 . (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s) t + (42.5rad/s 2 ) t 2 . (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s)t + (42.5rad/s2)t2. (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.