Introductory Chemistry: A Foundation
9th Edition
ISBN: 9781337399425
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 11ALQ
Explain in your own words what is meant by the term entropy. Explain how both matter spread and energy spread are related to the concept of entropy.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the
product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15%
glycerin by weight.
If the original charge is 500 kg, evaluate;
e. The ratio of sucrose to water in the original charge (wt/wt).
f. Moles of CO2 evolved.
g. Maximum possible amount of ethanol that could be formed.
h. Conversion efficiency.
i. Per cent excess of excess reactant.
Reactions:
Inversion reaction: C12H22O11 + H2O →2C6H12O6
Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2
Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the
molecule depicted below.
Bond B
2°C. +2°C. cleavage
Bond A
•CH3 + 26.← Cleavage
2°C. +
Bond C
+3°C•
CH3 2C
Cleavage
E
2°C. 26.
weakest bond
Intact molecule
Strongest 3°C 20.
Gund
Largest
argest
a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in
appropriate boxes.
C
Weakest
bond
A
Produces
Most
Bond
Strongest
Bond
Strongest Gund
produces least stable
radicals
Weakest
Stable radical
b. (4pts) Consider the relative stability of all cleavage products that form when bonds A,
B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B,
and C are all carbon radicals.
i. Which ONE cleavage product is the most stable? A condensed or bond line
representation is fine.
13°C. formed in
bound C
cleavage
ii. Which ONE cleavage product is the least stable? A condensed or bond line
representation is fine.
• CH3
methyl radical
Formed in Gund A Cleavage
c.…
Chapter 10 Solutions
Introductory Chemistry: A Foundation
Ch. 10.1 - at if energy were not conserved? How would this...Ch. 10.4 - u are calculating in a chemistry problem. What if...Ch. 10.5 - ercise 10.1 How many calories of energy correspond...Ch. 10.5 - ercise 10.2 Calculate the joules of energy...Ch. 10.5 - ercise 10.3 A 5.63-g sample of solid gold is...Ch. 10.5 - ercise 10.4 A 2.8-g sample of pure metal requires...Ch. 10.6 - Prob. 10.5SCCh. 10.7 - at if Hess’s law were not true? What are some...Ch. 10.7 - Prob. 10.6SCCh. 10.9 - Prob. 1CT
Ch. 10.10 - at if the first law of thermodynamics was true,...Ch. 10 - Prob. 1ALQCh. 10 - friend of yours reads that the process of water...Ch. 10 - ou place hot metal into a beaker of cold water. ol...Ch. 10 - Prob. 4ALQCh. 10 - Prob. 5ALQCh. 10 - xplain why aluminum cans make good storage...Ch. 10 - n Section 10.7, two characteristics of enthalpy...Ch. 10 - Prob. 8ALQCh. 10 - hat is meant by the term driving forces? Why are...Ch. 10 - Prob. 10ALQCh. 10 - Explain in your own words what is meant by the...Ch. 10 - Prob. 12ALQCh. 10 - What if energy was not conserved? How would this...Ch. 10 - The internal energy of a system is said to be the...Ch. 10 - Hydrogen gas and oxygen gas react violently to...Ch. 10 - Consider four 100.0-g samples of water, each in a...Ch. 10 - For each of the following situations ac. use the...Ch. 10 - Prob. 18ALQCh. 10 - Does the entropy of the system increase or...Ch. 10 - Prob. 20ALQCh. 10 - Prob. 1QAPCh. 10 - Prob. 2QAPCh. 10 - Prob. 3QAPCh. 10 - Prob. 4QAPCh. 10 - Prob. 5QAPCh. 10 - n Fig. 10.1, what kind of energy does ball A...Ch. 10 - Prob. 7QAPCh. 10 - f you spilled a cup of freshly brewed hot tea on...Ch. 10 - Prob. 9QAPCh. 10 - Prob. 10QAPCh. 10 - In studying heat flows for chemical processes,...Ch. 10 - When a chemical system evolves energy, where does...Ch. 10 - The combustion of methane, is an exothermic...Ch. 10 - Are the following processes exothermic or...Ch. 10 - What do we mean by thermodynamics? What is the...Ch. 10 - Prob. 16QAPCh. 10 - Prob. 17QAPCh. 10 - If q for a process is a positive number, then the...Ch. 10 - For an endothermic process, q will have a...Ch. 10 - A system absorbs 215 kJ of heat, and 116 kJ of...Ch. 10 - Prob. 21QAPCh. 10 - Prob. 22QAPCh. 10 - If 8.40 kJ of heat is needed to raise the...Ch. 10 - If it takes 654 J of energy to warm a 5.51-g...Ch. 10 - Prob. 25QAPCh. 10 - Prob. 26QAPCh. 10 - Covert the following numbers of kilojoules into...Ch. 10 - Prob. 28QAPCh. 10 - Prob. 29QAPCh. 10 - Prob. 30QAPCh. 10 - .5 kJ of heat is applied to a 1012-g block of...Ch. 10 - What quantity of heat energy must have en applied...Ch. 10 - If 125 J of heat energy is applied to a block of...Ch. 10 - If 100. J of heat energy is applied to a 25-g...Ch. 10 - What quantity of heat is required to raise the...Ch. 10 - Prob. 36QAPCh. 10 - The “Chemistry in Focus” segment Nature Has Hot...Ch. 10 - In the “Chemistry in Focus” segment Firewalking:...Ch. 10 - Prob. 39QAPCh. 10 - A _________ is a device used to determine the heat...Ch. 10 - The enthalpy change for the reaction of hydrogen...Ch. 10 - For the reaction kJ per mole of formed. Calculate...Ch. 10 - Prob. 43QAPCh. 10 - When ethanol (grain alcohol, is burned in oxygen,...Ch. 10 - Prob. 45QAPCh. 10 - Prob. 46QAPCh. 10 - Prob. 47QAPCh. 10 - Prob. 48QAPCh. 10 - Prob. 49QAPCh. 10 - Prob. 50QAPCh. 10 - Prob. 51QAPCh. 10 - Prob. 52QAPCh. 10 - Prob. 53QAPCh. 10 - Prob. 54QAPCh. 10 - Prob. 55QAPCh. 10 - Prob. 56QAPCh. 10 - Prob. 57QAPCh. 10 - Prob. 58QAPCh. 10 - Prob. 59QAPCh. 10 - Prob. 60QAPCh. 10 - If a reaction occurs readily but has an...Ch. 10 - Prob. 62QAPCh. 10 - Prob. 63QAPCh. 10 - Prob. 64QAPCh. 10 - Which of the following is an endothermic process?...Ch. 10 - Prob. 66APCh. 10 - Prob. 67APCh. 10 - Calculate the amount of energy required (in...Ch. 10 - If takes 1.25 kJ of energy to heat a certain...Ch. 10 - What quantity of heat energy would have to be...Ch. 10 - The specific heat capacity of gold is 0.13 J/g °C....Ch. 10 - Calculate the amount of energy required (in...Ch. 10 - If 10. J of heat is applied to 5.0-g samples of...Ch. 10 - A 50.1)-g sample of water at 100. °C is poured...Ch. 10 - A 25.0-g sample of pure iron at 85 °C is dropped...Ch. 10 - If 7.24 kJ of heat is applied to a 952-g block of...Ch. 10 - For each of the substances listed in Table 10.1,...Ch. 10 - A system releases 213 kJ of heat and has a...Ch. 10 - Prob. 79APCh. 10 - Calculate the enthalpy change when 5.00 g of...Ch. 10 - Prob. 81APCh. 10 - Prob. 82APCh. 10 - It has been determined that the body can generate...Ch. 10 - Prob. 84APCh. 10 - Prob. 85CPCh. 10 - The specific heat capacity of graphite is 0.71 J/g...Ch. 10 - A swimming pool, 10.0 in by 4.0 m, is filled with...Ch. 10 - Prob. 88CPCh. 10 - Prob. 89CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. < cleavage Bond A • CH3 + 26. t cleavage 2°C• +3°C• Bond C Cleavage CH3 ZC '2°C. 26. E Strongest 3°C. 2C. Gund Largest BDE weakest bond In that molecule a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest C bond Produces A Weakest Bond Most Strongest Bond Stable radical Strongest Gund produces least stable radicals b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 人 8°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. methyl radical •CH3 formed in bund A Cleavagearrow_forward
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY