For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. x − 2 2 9 − y 2 16 = 1
For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. x − 2 2 9 − y 2 16 = 1
Solution Summary: The author explains the nature of the curve (x-2)29-fricy1 among the types: a circle, an ellipse
a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola.
b. Graph the curve.
c. Identify key features of the graph. That is,
If the equation represents a circle, identify the center and radius.
If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity.
If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity.
If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry.
sy = f(x)
+
+
+
+
+
+
+
+
+
X
3
4
5
7
8
9
The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open
interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem
and the Mean Value Theorem for f on the closed interval [0, 9] ?
(A
A
B
B
C
D
=
Q6 What will be the allowable bearing capacity of sand having p = 37° and ydry
19 kN/m³ for (i) 1.5 m strip foundation (ii) 1.5 m x 1.5 m square footing and
(iii)1.5m x 2m rectangular footing. The footings are placed at a depth of 1.5 m
below ground level. Assume F, = 2.5. Use Terzaghi's equations.
0
Ne
Na
Ny
35 57.8 41.4 42.4
40 95.7 81.3 100.4
Q1 The SPT records versus depth are given in table below. Find qan for the raft 12%
foundation with BxB-10x10m and depth of raft D-2m, the allowable
settlement is 50mm.
Elevation, m 0.5 2
2 6.5 9.5 13 18 25
No.of blows, N 11 15 29 32 30 44
0
estigate shear
12%
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.