
Owlv2,1 Term Printed Access Card For Campbell/farrell/mcdougal's Biochemistry, 9th
9th Edition
ISBN: 9781305962972
Author: Campbell, Mary K.; Farrell, Shawn O.; Mcdougal, Owen M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10RE
RECALL Do DNA-polymerase enzymes also function as exonucleases?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider the reaction shown.
CH2OH
Ex.
CH2
-OH
CH2-
Dihydroxyacetone phosphate glyceraldehyde 3-phosphate
The standard free-energy change (AG) for this reaction is 7.53 kJ mol-¹.
Calculate the free-energy change (AG) for this reaction at 298 K when [dihydroxyacetone phosphate] = 0.100 M and
[glyceraldehyde 3-phosphate] = 0.00300 M.
AG=
kJ mol-1
If the pH of gastric juice is 1.6, what is the amount of energy (AG) required for the transport of hydrogen ions from a cell
(internal pH of 7.4) into the stomach lumen?
Assume that the membrane potential across this membrane is -70.0 mV and the temperature is 37 °C.
AG=
kJ mol-1
Consider the fatty acid structure shown.
Which of the designations are accurate for this fatty acid?
17:2 (48.11)
18:2(A9.12)
cis, cis-A8, A¹¹-octadecadienoate
w-6 fatty acid
18:2(A6,9)
Chapter 10 Solutions
Owlv2,1 Term Printed Access Card For Campbell/farrell/mcdougal's Biochemistry, 9th
Ch. 10 - RECALL Define replication, transcription, and...Ch. 10 - REFLECT AND APPLY Is the following statement true...Ch. 10 - REFLECT AND APPLY Why is it more important for DNA...Ch. 10 - RECALL Why is the replication of DNA referred to...Ch. 10 - RECALL What is a replication fork? Why is it...Ch. 10 - Prob. 6RECh. 10 - RECALL Why is it necessary to unwind the DNA helix...Ch. 10 - REFLECT AND APPLY In the MeselsonStahl experiment...Ch. 10 - REFLECT AND APPLY Suggest a reason why it would be...Ch. 10 - RECALL Do DNA-polymerase enzymes also function as...
Ch. 10 - RECALL Compare and contrast the properties of the...Ch. 10 - REFLECT AND APPLY Define processivity, and...Ch. 10 - REFLECT AND APPLY Comment on the dual role of the...Ch. 10 - REFLECT AND APPLY What is the importance of...Ch. 10 - REFLECT AND APPLY DNA synthesis always takes place...Ch. 10 - REFLECT AND APPLY What would happen to the...Ch. 10 - Prob. 17RECh. 10 - REFLECT AND APPLY Why is it not surprising that...Ch. 10 - Prob. 19RECh. 10 - RECALL List the substances required for...Ch. 10 - RECALL Describe the discontinuous synthesis of the...Ch. 10 - RECALL What are the functions of the gyrase,...Ch. 10 - RECALL Single-stranded regions of DNA are attacked...Ch. 10 - RECALL Describe the role of DNA ligase in the...Ch. 10 - RECALL What is the primer in DNA replication?Ch. 10 - Prob. 26RECh. 10 - REFLECT AND APPLY Why is a short RNA primer needed...Ch. 10 - Prob. 28RECh. 10 - RECALL What was the recent change in the estimated...Ch. 10 - Prob. 30RECh. 10 - RECALL Why is a clamp loader necessary in...Ch. 10 - RECALL How does proofreading take place in the...Ch. 10 - Prob. 33RECh. 10 - Prob. 34RECh. 10 - BIOCHEMICAL CONNECTIONS Of what benefit is it for...Ch. 10 - REFLECT AND APPLY Your book contains about 2...Ch. 10 - REFLECT AND APPLY E. coli incorporates...Ch. 10 - REFLECT AND APPLY Given the typing speed from...Ch. 10 - Prob. 39RECh. 10 - REFLECT AND APPLY How can breakdown in DNA repair...Ch. 10 - Prob. 41RECh. 10 - RECALL What is a direct way of repairing...Ch. 10 - Prob. 43RECh. 10 - Prob. 44RECh. 10 - Prob. 45RECh. 10 - Prob. 46RECh. 10 - RECALL How did Messelson and Weigle demonstrate...Ch. 10 - Prob. 48RECh. 10 - RECALL What is the Holliday Model?Ch. 10 - RECALL Do eukaryotes have fewer origins of...Ch. 10 - RECALL How does DNA replication in eukaryotes...Ch. 10 - Prob. 52RECh. 10 - REFLECT AND APPLY (a) Eukaryotic DNA replication...Ch. 10 - Prob. 54RECh. 10 - Prob. 55RECh. 10 - Prob. 56RECh. 10 - Prob. 57RECh. 10 - Prob. 58RECh. 10 - Prob. 59RECh. 10 - Prob. 60RECh. 10 - Prob. 61RECh. 10 - Prob. 62RECh. 10 - Prob. 63RECh. 10 - Prob. 64RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Classify the monosaccharides. H-C-OH H. H-C-OH H-C-OH CH₂OH H-C-OH H-C-OH H-C-OH CH₂OH CH₂OH CH₂OH CH₂OH D-erythrose D-ribose D-glyceraldehyde Dihydroxyacetone CH₂OH CH₂OH C=O Answer Bank CH₂OH C=0 HO C-H C=O H-C-OH H-C-OH pentose hexose tetrose H-C-OH H-C-OH H-C-OH aldose triose ketose CH₂OH CH₂OH CH₂OH D-erythrulose D-ribulose D-fructosearrow_forwardFatty acids are carboxylic acids with long hydrophobic tails. Draw the line-bond structure of cis-A9-hexadecenoate. Clearly show the cis-trans stereochemistry.arrow_forwardThe formation of acetyl-CoA from acetate is an ATP-driven reaction: Acetate + ATP + COA Acetyl CoA+AMP+ PP Calculate AG for this reaction given that the AG for the hydrolysis of acetyl CoA to acetate and CoA is -31.4 kJ mol-1 (-7.5 kcal mol-¹) and that the AG for hydrolysis of ATP to AMP and PP; is -45.6 kJ mol-1 (-10.9 kcal mol-¹). AG reaction kJ mol-1 The PP, formed in the preceding reaction is rapidly hydrolyzed in vivo because of the ubiquity of inorganic pyrophosphatase. The AG for the hydrolysis of pyrophosphate (PP.) is -19.2 KJ mol-¹ (-4.665 kcal mol-¹). Calculate the AG° for the overall reaction, including pyrophosphate hydrolysis. AGO reaction with PP, hydrolysis = What effect does the presence of pyrophosphatase have on the formation of acetyl CoA? It does not affect the overall reaction. It makes the overall reaction even more endergonic. It brings the overall reaction closer to equilibrium. It makes the overall reaction even more exergonic. kJ mol-1arrow_forward
- Consider the Haworth projections of ẞ-L-galactose and ẞ-L-glucose shown here. OH CH₂OH OH CH₂OH OH OH OH ОН OH он B-L-galactose B-L-glucose Which terms describe the relationship between these two sugars? epimers enantiomers anomers diastereomersarrow_forwardClassify each characteristic as describing anabolism or catabolism. Anabolism Answer Bank Catabolism transforms fuels into cellular energy, such as ATP or ion gradients uses NADPH as the electron carrier synthesizes macromolecules requires energy inputs, such as ATP uses NAD+ as the electron carrier breaks down macromoleculesarrow_forwardThe table lists the standard free energies (AG") of hydrolysis of some phosphorylated compounds. Compound kJ mol-1 kcal mol-1 Phosphoenolpyruvate (PEP) -61.9 -14.8 1,3-Bisphosphoglycerate (1,3-BPG) -49.4 -11.8 Creatine phosphate -43.1 -10.3 ATP (to ADP) -30.5 -7.3 Glucose 1-phosphate -20.9 -5.0 Pyrophosphate (PP) -19.3 -4.6 Glucose 6-phosphate -13.8 -3.3 Glycerol 3-phosphate -9.2 -2.2 What is the direction of each of the reactions shown when the reactants are initially present in equimolar amounts? (a) ATP + H2O ADP + P (b) ATP + glycerol glycerol 3-phosphate + ADParrow_forward
- Characterize each term or phrase as pertaining to simple or facilitated diffusion. Simple diffusion Facilitated diffusion Answer Bank requires an input of free energy lipophilic molecules directly through membrane via channels polar molecules Na+arrow_forwardSort the descriptions into properties that describe either saturated phospholipids or unsaturated phospholipids. Saturated phospholipids Saturated and unsaturated phospholipids Unsaturated phospholipids Answer Bank have no double bonds in the fatty acid carbon chains have straight fatty acid tails have at least one double bond in the fatty acid tails have bent fatty acid tails are built upon a glycerol backbone make the membrane somewhat rigid at low temperatures allow the membrane to remain fluid and flexible at low temperatures fatty acid tails pack tightly together maintain some space between adjacent phospholipidsarrow_forwardPlace the events of an action potential in order, starting and ending with a cell at its resting membrane potential. Cell starts at its resting membrane potential. Cell returns to its resting membrane potential. Answer Bank K+ channels fully open, and Na+ channels are inactivated. K* rushes out of the cell, causing repolarization. K+ channels close slowly, resulting in hyperpolarization. Na+ channel gates reset. Fast Na+ and slow K+ channels are activated. Na rushes into the cell, causing membrane depolarization. Ligand activation of the acetylcholine receptor depolarizes the membrane.arrow_forward
- Glucose and fructose are reducing sugars. Sucrose, or table sugar, is a disaccharide consisting of both fructose and glucose. Is sucrose a reducing sugar? Why or why not? No, because only one anomeric carbon is involved in the glycosidic linkage. No, because both anomeric carbons are involved in the glycosidic linkage. Yes, because the fructose unit can convert to the open-chain form. Yes, because the glucose unit can convert to the open-chain form. Which statements about reducing sugars are true? The oxidation of a reducing sugar forms a carboxylic acid sugar. D-Arabinose (an aldose) is a reducing sugar. Reducing sugars contain keto groups instead of aldehyde groups. A disaccharide with its anomeric carbons joined by the glycosidic linkage cannot be a reducing sugar. A reducing sugar will not react with the Cu² + in Fehlings's reagent.arrow_forwardExamine the pairs of molecules and identify the more-reduced molecule in each pair. H-C- CH, OH CH HO-C-H CH₁₂ Pyruvate Ethanol Acetaldehyde Lactate COO H-C H H- -C-H COO- Succinate Fumarate -OOC COO H COO- H――000- CH₂ COO- Oxalosuccinate H-C-OH OOC-C-H CH₂ COO Isocitratearrow_forwardClassify each description as characterizing facilitated diffusion, primary active transport, secondary active transport, or both primary and secondary active transport. Facilitated diffusion Primary active transport Secondary active transport Primary and secondary active transport Answer Bank requires ATP includes lactose permease directly uses ATP hydrolysis to pump substances across the membrane includes the Na+-K+ ATPase pump always moves more than one substance at a time movement of substances against an electrochemical gradient does not require energy input includes uniporters uses energy stored in electrochemical gradients generated by pumpsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning

Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biomolecules - Protein - Amino acids; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=ySNVPDHJ0ek;License: Standard YouTube License, CC-BY