To find the total angular displacement during the playing time of the compact disc in part (B) of Example 10.2, the disc was modeled as a rigid object under constant angular acceleration . In reality, the angular acceleration of a disc is not constant. In this problem, let us explore the actual time dependence of the angular acceleration. (a) Assume the track on the disc is a spiral such that adjacent loops of the track are separated by a small distance h . Slum that the radius r of a given portion of the track is given by r = r i + h θ 2 π where r i is the radius of the innermost portion of the track and θ is the angle through which the disc turns to arrive at the location of the track of radius r . (b) Show that the rate of change of the angle θ is given by d θ d t = v r i + ( h θ / 2 π ) where v is the constant speed with which the disc surface passes the laser. (c) From the result in part (b), use integration to find an expression for the angle θ as a function of time. (d) From the result in part (c), use differentiation to find the angular acceleration of the disc as a function of time.
To find the total angular displacement during the playing time of the compact disc in part (B) of Example 10.2, the disc was modeled as a rigid object under constant angular acceleration . In reality, the angular acceleration of a disc is not constant. In this problem, let us explore the actual time dependence of the angular acceleration. (a) Assume the track on the disc is a spiral such that adjacent loops of the track are separated by a small distance h . Slum that the radius r of a given portion of the track is given by r = r i + h θ 2 π where r i is the radius of the innermost portion of the track and θ is the angle through which the disc turns to arrive at the location of the track of radius r . (b) Show that the rate of change of the angle θ is given by d θ d t = v r i + ( h θ / 2 π ) where v is the constant speed with which the disc surface passes the laser. (c) From the result in part (b), use integration to find an expression for the angle θ as a function of time. (d) From the result in part (c), use differentiation to find the angular acceleration of the disc as a function of time.
Solution Summary: The author explains that the radius of a given portion of the track is given by r=r_i+htheta 2pi
To find the total angular displacement during the playing time of the compact disc in part (B) of Example 10.2, the disc was modeled as a rigid object under constant angular acceleration. In reality, the angular acceleration of a disc is not constant. In this problem, let us explore the actual time dependence of the angular acceleration. (a) Assume the track on the disc is a spiral such that adjacent loops of the track are separated by a small distance h. Slum that the radius r of a given portion of the track is given by
r
=
r
i
+
h
θ
2
π
where ri is the radius of the innermost portion of the track and θ is the angle through which the disc turns to arrive at the location of the track of radius r. (b) Show that the rate of change of the angle θ is given by
d
θ
d
t
=
v
r
i
+
(
h
θ
/
2
π
)
where v is the constant speed with which the disc surface passes the laser. (c) From the result in part (b), use integration to find an expression for the angle θ as a function of time. (d) From the result in part (c), use differentiation to find the angular acceleration of the disc as a function of time.
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.