
Nickel metal reacts with carbon monoxide to form tetra-carbonyl nickel, Ni(CO)4:
This reaction is exploited in the Mond process in order to separate pure nickel from other metals. The reaction above separates nickel from impurities by dissolving it into the gas phase. Conditions are then changed so that the reaction runs in the opposite direction to recover the purified metal.
(a) Predict the sign of
(b) Use tabulated
(c) Find the range of temperatures at which this reaction is spontaneous in the forward direction.

Concept Introduction:
Gibb’s free energy is a state function which predicts whether a process is spontaneous or not at conditions of constant pressure and temperature. Gibb’s free energy change for a process at constant temperature is defined as:
Where
If a process is exothermic and entropy of the process decreases, that is
If a process is endothermic and entropy of the process increases, that is
Enthalpy change for a process is determined as:
Where v is for stoichiometric coefficients.
Similarly entropy change for a process is determined as:
Where v is for stoichiometric coefficients and
Similar to enthalpy and entropy, standard Gibb’s free energy change can be calculated as:
Also
Answer to Problem 10.88PAE
Solution:
a) The sign of
b)
c)
The reaction is spontaneous in the forward direction at temperatures below 392.3 K.
a)
Explanation of Solution
Entropy is defined as the measure of randomness or disorder in a system.
More number of particles would mean more random arrangements of particles of a system. And so entropy of any system increases if it moves towards more random distribution of particles constituting the system.
One way to increase entropy of a system is to increase the number of particles present. So a chemical reaction that would increase the number of moles of gas in the system would increase entropy.
Given reaction is:
The reactants have 4 moles of gas while the product has just one. Hence entropy of products is less than the reactants. Thus the sign of
b)
Given reaction is:
The thermodynamic enthalpies of formation for the compounds as tabulated are
Calculate enthalpy change the above reaction that is
The thermodynamic Gibb’s free emergies of formation for the compounds as tabulated are
Calculate enthalpy change the above reaction that is
Similarly, thermodynamic entropies for the compounds as tabulated are
Calculate enthalpy change the above reaction that is
c)
If a process is exothermic and entropy of the process decreases, that is
Calculate the temperature at which
The reaction is spontaneous in the forward direction at temperatures below 392.3 K.
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with Quick Prep and Student Solutions Manual 24-Months Printed Access Card
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




