ELEM PRINC CHEM (LL) W/EBOOK
ELEM PRINC CHEM (LL) W/EBOOK
4th Edition
ISBN: 9781119846772
Author: FELDER
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 10, Problem 10.3P
Interpretation Introduction

(a)

Interpretation:

Calculate an expression for mw(t) letting t=0 signify the time at which mw(t)=750kg/h, and incorporate it into a differential methanol balance, letting M(kg) be the mass of methanol in the tank at any time.

Concept introduction:

Material balance

Accumulation= Input  Output + Generation  Consumption

Interpretation Introduction

(b)

Interpretation:

Integrate the balance equation to obtain an expression for M(t) and check the solution two ways. For now, assume that the tank has an infinite capacity.

Interpretation Introduction

(c)

Interpretation:

Calculate how long it will take for the mass of methanol in the tank to reach its maximum value, and calculate that value. Then calculate the time it will take to empty the tank.

Concept introduction:

For a maximum value of a function of M ,

dMdt=0

Interpretation Introduction

(d)

Interpretation:

Suppose the tank volume is 3.4m3 .Draw a plot of Mvst, covering the period from t=0 to an hour after the tank is empty. Write expressions for M(t) in each time range when the time changes.

Blurred answer
Students have asked these similar questions
In baseball, batters frequently attempt to hit a ball as far as possible. However, baseballs are inelastic with an officially required "coefficient of restitution" CR ≈ 0.55 on ash wood. The coefficient of restitution of a dropped ball iswhere H is the initial drop height, h is the max. height on the rebound, and h ≈ 2πH tan δ for a homogeneous material. Assuming that a baseball is homogeneous and has a storage modulus approximately the same as that of cork (E' = 18.6 MPa), what must the value of the loss modulus E'' be so that the ball is regulation?
The creep strain rate of a polymer (in “Hz”) is given by   where T is the temperature and Q = 100. kJ/mol is the activation energy. How long t will it take for a rod of this polymer to extend from 10. mm to 15 mm at 100. °C?
Creep compliance J(t) An amorphous polymer has Tg = 100 °C. A creep modulus of 1/J = 1 GPa was measured after t₁ = 1 h at T₁ = 90 °C. Suppose that log 10 a (T) = 17.5(T-Tg) 52+(T-Tg) 1 for this material. What is the shift factor a at T = T₁ relative to the reference Tg? What is the time t₂ required to reach a modulus of 1 GPa at T2 = 80 °C? TR = T = 100 °C |J(t) = 1 GPa-1 + log a(T₁) T₁ = 75 °C T₂ = 50 °C log tr log t₁ log t log t₂ = ?
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The