Classical Mechanics
Classical Mechanics
5th Edition
ISBN: 9781891389221
Author: John R. Taylor
Publisher: University Science Books
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10, Problem 10.28P
To determine

Show that i has the form similar to the axisymmetric body.

Expert Solution & Answer
Check Mark

Answer to Problem 10.28P

The inertia tensor for the prism is M3[M4(2a2+L2)M6(L2+6a2)M24(L2+4a2)M6(L2+6a2)M4(2a2+L2)M8(8a2+L2)M24(L2+4a2)M8(8a2+L2)Ma2]_.

Explanation of Solution

Classical Mechanics, Chapter 10, Problem 10.28P

Write the expression for the moment of inertia tensor.

    I=[IxxIxyIxzIyxIyyIyzIzxIzyIzz]        (I)

Here, Ixx,Iyy,Izz are the moment of inertia along respective axis.

Figure 1 shows a equilateral triangular prism having length L and the length of each side of triangle of prism is 2a.

The height of the prism is,

    h=(2a2)(a)2=3a

The area of the triangular prism base is,

    A=12(base)(height)=12(2a)(3a)=3a2

The volume of the triangular prism is, V=AL so that the volume density of the triangular prism is given by,

    ρ=MV=MAL

Here, V is the volume of the prism, M is the mass of the prism.

Substitute 3a2 for A

    ρ=M3a2L        (II)

The range of y is 0y3a so that the range of x at any value of y is,

    y3xy3

The moment of inertia about an axis parallel to the zz axis of the prism is,

    Iaz=2ρz=0Ldzy=02adyx=013a(x2+y2)dx=2ρz=0Ldzy=03ady[x33+xy2]x=013y=2ρz=0Ldzy=05ady[13(13y)3+(13y)y2]=2ρz=0Ldzy=03ady[(193+13)y3]

Further solve will give,

    Itz=23(19+1)ρz=0Ldzy=03adyy3=2(1093)ρz=0Ldz[y44]y=03a=2(1093)[(3a)44]ρz=0Ldz=2(1093)[9a44]ρ(L)

The value of Izz is,

    Ie=53a4ρL        (III)

Use equation (II) in equation (III),

    Izz=53a4(M3a2L)L=53Ma2

The moment of inertia of the prism around an axis passing through centroid is,

    I0=Md2=M(23a)2=43Ma2

Using the moment of inertia about an axis parallel to the z-axis passing through one corner of the prism and the moment of inertia of the prism around pan axis passing through centroid to find the required moment of inertia of the prism is,

    Izz=Ma23        (IV)

The values of ixx and Iyy is,

    Ixx=Iyy=M18(6a2+L2)Ixz=Izx=M72(L2+4a2)Iyz=Izy=M24(8a2+L2)

Thus the given inertia tensor becomes,

    I=[M12(2a2+L2)M18(L2+6a2)M72(L2+4a2)M18(L2+6a2)M12(2a2+L2)M24(8a2+L2)M72(L2+4a2)M24(8a2+L2)Ma23]=M3[M4(2a2+L2)M6(L2+6a2)M24(L2+4a2)M6(L2+6a2)M4(2a2+L2)M8(8a2+L2)M24(L2+4a2)M8(8a2+L2)Ma2]

Therefore, the inertia tensor for the prism is M3[M4(2a2+L2)M6(L2+6a2)M24(L2+4a2)M6(L2+6a2)M4(2a2+L2)M8(8a2+L2)M24(L2+4a2)M8(8a2+L2)Ma2]_

Conclusion:

Therefore, the inertia tensor for the prism M3[M4(2a2+L2)M6(L2+6a2)M24(L2+4a2)M6(L2+6a2)M4(2a2+L2)M8(8a2+L2)M24(L2+4a2)M8(8a2+L2)Ma2]_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
28.1 Rigid Bodies; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=u_LAfG5uIpY;License: Standard YouTube License, CC-BY