Concept explainers
Review. A small object with mass 4.00 kg moves counterclockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector
(a)
The new position vector of the object.
Answer to Problem 10.26P
The new position vector of the object is
Explanation of Solution
The mass of the object is
Formula to calculate the angle make by the small object is,
Formula to calculate the position vector of the small object is,
Here,
Substitute
Conclusion:
Therefore, new position vector of the object is
(b)
The quadrant in which the particle is located and the angle made by its position with the positive
Answer to Problem 10.26P
The object now located in the second quadrant and makes
Explanation of Solution
Form part (a), Section (1), the angle made by the position vector from the positive axis is
Since the value of angle lies between
Conclusion:
Therefore, the object now located in the second quadrant and makes
(c)
The velocity of the object.
Answer to Problem 10.26P
The velocity of the object is
Explanation of Solution
The mass of the object is
Since the velocity vector always be the perpendicular to the position vector. So, the angle that the velocity vector made by the positive axis is,
Substitute
Formula to calculate the velocity of the object is,
Here,
Substitute
Formula to calculate the velocity vector of the object is,
Substitute
Conclusion:
Therefore, the velocity vector of the object is
(d)
The quadrant in which the particle is moving.
Answer to Problem 10.26P
The object is moving in third quadrant in anticlockwise direction.
Explanation of Solution
The mass of the object is
Form part (c), Section (1), the angle made by the velocity vector from the positive axis is
Since the value of angle lies between
Conclusion:
Therefore, the object is moving in third quadrant in anticlockwise direction.
(e)
The acceleration of the object.
Answer to Problem 10.26P
The acceleration of the object is
Explanation of Solution
Since the acceleration vector always be the perpendicular to the velocity vector. So, the angle that the acceleration vector made by the positive axis is,
Substitute
Formula to calculate the acceleration of the object is,
Here,
Substitute
Formula to calculate the acceleration vector of the object is,
Substitute
Conclusion:
Therefore, the acceleration of the object is
(f)
The position, acceleration and velocity vector.
Answer to Problem 10.26P
position, acceleration and velocity vector is shown in figure (I).
Explanation of Solution
Position, velocity and acceleration is a vector quantity hence they represented by both magnitude and direction in a vector diagram.
Draw the vector diagram of the position, velocity and the acceleration.
Figure (I)
Conclusion:
Therefore, the position, acceleration and velocity vector is shown in figure (I).
(g)
The total force vector exerted on the object.
Answer to Problem 10.26P
The total force vector exerted on the object is
Explanation of Solution
Formula to calculate the force on the object is,
Conclusion:
Substitute
Therefore, the total force vector exerted on the object is
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers (AP Edition)
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- pls helparrow_forwardpls helparrow_forward6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forward
- No chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forwardՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forward
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning