Determine the moments at the supports and draw bending moment diagram.
Answer to Problem 10.1P
Explanation of Solution
Given information:
For AB,
In the member AB fixed end is subjected to the udl load with 25kN/m of the first half length.
Determine the fixed end moment for beam span AB, shown in the figure below, using the following formula.
And,
In the member BC, where B is roller support and C is fixed end support. It is subjected to point loads of with 15 kN, 15 kN and 15 kN.
Determine the fixed end moment for beam span BC, shown in the figure below, using the following formula.
Where, P is the concentrated load acting on the beam BC.
By using slope deflection formula, calculate the moment at the end of the beam
Similarly for the beam BC,
Since the moment equilibrium at support B.
Now substitute the value of
Now determine the shear reaction at the end, of span AB and BC.
For span AB
Moment about A
And,
For Span BC
Moment about B
And
Shear force diagram for the whole beam.
At point A =
At right of point D =
At point B =
At right of point B =
At point E =
At right of point E =
At point F =
At right of point F =
At point G
At right of point F =
The maximum Positive sagging moment in span AB, where the shear force is equal to zero.
The maximum positive sagging moment is determine by the below formula.
Bending moment at point E.
Bending moment at point F.
Bending moment at point G.
Want to see more full solutions like this?
Chapter 10 Solutions
Structural Analysis, Student Value Edition
- Send me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forwardSend me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forwardQ5: Find the force in each member of truss in figure below. 10 kN -2 m- 4 m 2 m 5 kN 4 m 45arrow_forward
- Send me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forwardSend me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forwardSend me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forward
- STRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forward18:02 28% 50 同 こ 【Recommend】 Easily add text in PDF 3 m 35 kN 4m 84 kN +3m EA = constant E = 200 GPa A T5 4m Add 1,200 mm² Find Horizontal and vertical displacement at B 4 kN m m- B Determine Vertical displacement at C Determine the displacement or point B of the steel beam shown in Take E200 GPa, I = 500(106) mm4. 5 m 2/ 40 kN B 12 kN/m 4 m. 12 kN/m 3 m B 10 m- E constant = 70 GPa I 554 (10) mm Determine Displacement at C ΙΣΤ Edit Annotate Fill & Sign Convert Allarrow_forwardIn a floor of an industrial building, boilers are supported symmetrically on secondary beams A and B, which have a centre-to-centre distance of 5 m and which are in turn supported by the main beam, which has a span of 9 m (see Fig. 10.62). Design the main beam given the following data:arrow_forward
- S₂ S S,-40 S,-100 P S,=40 40 80 80 40arrow_forwardThe bolted connection shown is connected with M20 bolts in standard holes. The plate material is A36 steel. Find the allowable (ASD) tensile strength of each plate. 50 65 65 65 13 40 65 40 13arrow_forwardA 3.048 m long column (Fy = 483 MPa) carries an axial compression load of 5000 kN dead load. The column is braced at mid-height to strengthen the column in the weak direction. Use LRFD. Which of the following most nearly gives the nominal compressive strength? Show solution and drawingsarrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning