Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.17P
To determine
The Born approximation for one-dimensional scattering using the result in Problem 10.16. And show that the reflection coefficient takes the form,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Statistical Physics. Microcanonical Ensemble.
Problem 9.20
(a) Show that the skin depth in a poor conductor (σ << we) is (2/0)√√√ε/μ (inde-
pendent of frequency). Find the skin depth (in meters) for (pure) water. (Use the
static values of ε, μ, and σ; your answers will be valid, then, only at relatively
low frequencies.)
(b) Show that the skin depth in a good conductor (σ » we) is λ/2л (where λ is the
wavelength in the conductor). Find the skin depth (in nanometers) for a typical
metal (σ 107 (2 m)¯¹) in the visible range (w≈ 10¹5/s), assuming € ≈ €0 and
μ≈μo. Why are metals opaque?
(c) Show that in a good conductor the magnetic field lags the electric field by 45°,
and find the ratio of their amplitudes. For a numerical example, use the "typical
metal" in part (b).
I need the answer as soon as possible
Knowledge Booster
Similar questions
- Problem 6.25 Express the expectation value of the dipole moment pe for an electron in the hydrogen state 1 4 = (211 +210) √2 in terms of a single reduced matrix element, and evaluate the expectation value. Note: this is the expectation value of a vector so you need to compute all three components. Don't forget Laporte's rule!arrow_forwardThe system has a particle (its mass is m) in the vacuum, no potential energy (V(x) = 0). The Hamiltonian of the system ħ² 8² is given by Ĥ = -2m dx² The initial wave functions at time t = 0 is where a is a real constant. Question #1: Find the time depended wave functions V(x, t) = ? Question #2: Also, for the wave function (x, t) (that has been found above), find the probability current density defined as Note: +∞ 1000 +∞ [too where ã and ß are complex constants; v (z,t = 0) = (=) *exp(- 02²) 1 j = 2 2m 8 (¥* (x)pV(x) + V(x) (pV(x))*) r+∞ 88 da exp(-ã+²) = √ dx dr exp (-ãx² - ikx) = = √= exp(-1/²) dk exp (-²+ ika) = √³ exp(-82²) 4 ax²+bx+c = a (x + = a (x + 2)² + c - 50 2a 4a carrow_forwardA point particle moves in space under the influence of a force derivablefrom a generalized potential of the formU(r, v) = V (r) + σ · L,where r is the radius vector from a fixed point, L is the angular momentumabout that point, and σ is the fixed vector in space. Find the components of the force on the particle in spherical polar coordinates, on the basis of the equation for the components of the generalized force Qj: Qj = −∂U/∂qj + d/dt (∂U/∂q˙j)arrow_forward
- Problem 1.17 A particle is represented (at time=0) by the wave function A(a²-x²). if-a ≤ x ≤+a. 0, otherwise. 4(x, 0) = { (a) Determine the normalization constant A. (b) What is the expectation value of x (at time t = 0)? (c) What is the expectation value of p (at time t = 0)? (Note that you cannot get it from p = md(x)/dt. Why not?) (d) Find the expectation value of x². (e) Find the expectation value of p².arrow_forwardFor Problem 8.16, how do I prove the relations and give the correct expressions?arrow_forwardA point particle moves in space under the influence of a force derivablefrom a generalized potential of the formU(r, v) = V (r) + σ · L,where r is the radius vector from a fixed point, L is the angular momentumabout that point, and σ is the fixed vector in space. Find the components of the force on the particle in Cartesian coordinates, on the basis of the equation for the components of the generalized force Qj: Qj = −∂U/∂qj + d/dt (∂U/∂q˙j)arrow_forward
- Subject : Mathematical Physics Write the power series (about the origin) of the following functions. Use Theorem III to find the disk of convergence of each series. What you are looking for is the point (anywhere in the complex plane) nearest the origin, at which the function does not have a derivative. Then the disk of convergence has center at the origin and extends to that point. The series converges inside the disk.arrow_forwardProblem 9.24 If you take the model in Ex. 4.1 at face value, what natural frequency do you get? Put in the actual numbers. Where, in the electromagnetic spectrum, does this lie, assuming the radius of the atom is 0.5 Å? Find the coefficients of refraction and dispersion, and compare them with the measured values for hydrogen at 0°C and atmospheric pressure: A = 1.36 × 10-4, B = 7.7 x 10-15 m².arrow_forwardProblem 9.9 Write down the (real) electric and magnetic fields for a monochro- matic plane wave of amplitude Eo, frequency w, and phase angle zero that is (a) traveling in the negative x direction and polarized in the z direction; (b) traveling in the direction from the origin to the point (1, 1, 1), with polarization parallel to the xz plane. In each case, sketch the wave, and give the explicit Cartesian components of k and în.arrow_forward
- The example below comes out of griffiths intro to electrodynamics. I was wondering if you can make a spherical and cylindrical problem like this example, one of each and use to divergence theorem to prove both sides of integrals from gauss divergence theorem. Hope this makes sense and thankarrow_forwardLegrende polynomials The amplitude of a stray wave is defined by: SO) =x (21+ 1) exp li8,] sen 8, P(cos 8). INO Here e is the scattering angle, / is the angular momentum and 6, is the phase shift produced by the central potential that performs the scattering. The total cross section is: Show that: 'É4+ 1)sen² 8, .arrow_forwardFor Problem 8.37, how do I find <1/r> within the integral? I think that the exponent function inside of P(r) is actually troublesome to finding what I need to find; however, I am not certain of what's really the correct procedure here.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON