EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
7th Edition
ISBN: 9780100853188
Author: STOKER
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10, Problem 10.145EP

(a)

Interpretation Introduction

Interpretation:

A solution having 75 mEq Na+, 25 mEq K+, 95 mEq Cl, and 5 mEq NO3 is whether possible to prepare has to be determined considering charge-balance.

Concept-Introduction:

Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in mEq/L or Eq/L concentration units.

(a)

Expert Solution
Check Mark

Answer to Problem 10.145EP

A solution having 75 mEq Na+, 25 mEq K+, 95 mEq Cl, and 5 mEq NO3 is possible to prepare.

Explanation of Solution

Given data is shown below:

  Concentration of Na+ = 75 mEqConcentration of K+ = 25 mEqConcentration of NO3 = 5 mEqConcentration of Cl = 95 mEq

A charge balance exists between the ions in the given electrolyte solution when the sum of Eq/L of positive ions is equal to the sum of Eq/L of negative ions.

Sum of mEq of negative ions is calculated as shown,

  mEq of negative ions= 95 mEq  Cl+ 5 mEq NO3= 100 mEq negative ions.

Thus, the sum of mEq of positive ions must be also 100 mEq.

Sum of mEq of positive ions can be determined as follows,

  mEq of positive ions  = 75 mEq Na++ 25 mEq K+ = 100 mEq positive ions

Here, the sum of mEq/L of positive ions is equal to the sum of mEq/L of negative ions

Therefore,

A solution having 75 mEq Na+, 25 mEq K+, 95 mEq Cl, and 5 mEq NO3 is possible to prepare.

(b)

Interpretation Introduction

Interpretation:

A solution having 73 Eq K+, 55 Eq Cl, and 25 Eq C2H3O2 is whether possible to prepare has to be determined considering charge-balance.

Concept-Introduction:

Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in mEq/L or Eq/L concentration units.

(b)

Expert Solution
Check Mark

Answer to Problem 10.145EP

A solution having 73 Eq K+, 55 Eq Cl, and 25 Eq C2H3O2 is not possible to prepare.

Explanation of Solution

Given data is shown below:

  Conc of K+= 73 Eq Conc of Cl = 55 EqConc of C2H3O2 = 25 Eq 

A charge balance exists between the ions in the given electrolyte solution when the sum of Eq/L of positive ions is equal to the sum of Eq/L of negative ions.

Sum of Eq of negative ions is calculated as shown,

  mEq of negative ions= 55 Eq Cl + 25 Eq C2H3O2= 80 Eq negative ions.

Thus, the sum of Eq of positive ions must be also 80 Eq for charge balance to exist.  However, sum of Eq of positive ions is 73 Eq.

Hence, the sum of Eq/L of positive ions is not equal to the sum of Eq/L of negative ions

Therefore,

A solution having 73 Eq K+, 55 Eq Cl, and 25 Eq C2H3O2 is not possible to prepare.

(c)

Interpretation Introduction

Interpretation:

A solution having 750 mEq Na+ and 0.750 Eq Cl is whether possible to prepare has to be determined considering charge-balance.

Concept-Introduction:

Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in mEq/L or Eq/L concentration units.

Unit Conversion:

  1 Eq = 103 mEq

(c)

Expert Solution
Check Mark

Answer to Problem 10.145EP

A solution having 750 mEq Na+ and 0.750 Eq Cl is possible to prepare.

Explanation of Solution

Given data is shown below:

  Concentration of Na+ = 750 mEq Concentration of Cl = 0.750 Eq 

A charge balance exists between the ions in the given electrolyte solution when the sum of Eq/L of positive ions is equal to the sum of Eq/L of negative ions.

Eq of positive and negative ions follows as,

  Eq of positive ions = 750 mEq Na+ = 750 mEq positive ionsEq of negative ions = 0.750 Eq Cl = (0.750 Eq)(103 mEq)1 Eq= 750 mEq negative ions

Here, the sum of mEq/L of positive ions is equal to the sum of mEq/L of negative ions

Therefore,

A solution having 750 mEq Na+ and 0.750 Eq Cl is possible to prepare.

(d)

Interpretation Introduction

Interpretation:

A solution having 0.025 mole Na+, 0.025 mole Ca2+ and 0.075 mole Cl is whether possible to prepare has to be determined considering charge-balance.

Concept-Introduction:

Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in mEq/L or Eq/L concentration units.

Unit Conversion:

  1 Eq = 103 mEq

(d)

Expert Solution
Check Mark

Answer to Problem 10.145EP

A solution having 0.025 mole Na+, 0.025 mole Ca2+ and 0.075 mole Cl is possible to prepare.

Explanation of Solution

Given data is shown below:

  No. of moles of Na+ = 0.025 moleNo. of moles of Ca2+ = 0.025 moleNo. of moles of Cl = 0.075 mole 

A charge balance exists between the ions in the given electrolyte solution when the sum of Eq/L of positive ions is equal to the sum of Eq/L of negative ions.

Calculate the equivalence of each ions:

Charge of Na+= 1+Hence,1 mole = 1 equivalence0.025 mole Na+ = 0.025 Eq Na+Charge of Ca2+= 1+Hence,1 mole = 2 equivalence0.025 mole Na+ = (2×0.025 mole  Ca2+) = 0.050 Eq Ca2+Charge of Cl= 1Hence,1 mole = 1 equivalence0.075 mole Cl = 0.075 Eq Cl

Sum of Eq of positive and sum of Eq of negative ions follows as,

Sum of Eq of positive ions = 0.025 Eq Na+ +  0.050 Eq Ca2+= 0.075 Eq positive ionsEq of negative ions = 0.075 Eq ClTherefore,Eq of positive ions = Eq of negative ions 

Therefore,

A solution having 0.025 mole Na+, 0.025 mole Ca2+ and 0.075 mole Cl is possible to prepare.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Correctly name this compound using the IUPAC naming system by sorting the components into the correct order. Br IN Ν H
How is the radical intermediate for this structure formed?  Can you please draw arrows from the first radical to the resonance form that would result in this product?  I'm lost.
Part VI. (a) calculate the λ max of the compound using woodward - Fieser rules. (b) what types of electronic transitions are present in the compound? (c) what are the prominent peaks in the IR spectrum of the compound?

Chapter 10 Solutions

EBK GENERAL, ORGANIC, AND BIOLOGICAL CH

Ch. 10.3 - Prob. 3QQCh. 10.4 - In which of the following pairs of acids are both...Ch. 10.4 - Prob. 2QQCh. 10.4 - Prob. 3QQCh. 10.5 - Acid ionization constants give information about...Ch. 10.5 - Prob. 2QQCh. 10.5 - Which of the following is the strongest acid? a....Ch. 10.5 - Prob. 4QQCh. 10.6 - Which of the following is an inappropriate...Ch. 10.6 - Prob. 2QQCh. 10.6 - In which of the following pairs of substances are...Ch. 10.7 - Prob. 1QQCh. 10.7 - Prob. 2QQCh. 10.7 - Prob. 3QQCh. 10.8 - Prob. 1QQCh. 10.8 - Prob. 2QQCh. 10.8 - What is the [OH] in an aqueous solution in which...Ch. 10.8 - Prob. 4QQCh. 10.8 - Prob. 5QQCh. 10.9 - Prob. 1QQCh. 10.9 - Prob. 2QQCh. 10.9 - Prob. 3QQCh. 10.9 - A solution with a pH of 12.0 is a. weakly acid b....Ch. 10.9 - Prob. 5QQCh. 10.9 - If the pH of a solution increases from 4.0 to 6.0...Ch. 10.9 - Prob. 7QQCh. 10.10 - Prob. 1QQCh. 10.10 - Prob. 2QQCh. 10.11 - Prob. 1QQCh. 10.11 - Prob. 2QQCh. 10.11 - Prob. 3QQCh. 10.12 - Which of the following combinations of substances...Ch. 10.12 - Prob. 2QQCh. 10.12 - Prob. 3QQCh. 10.12 - The chemical reaction that occurs when a HCN/CN...Ch. 10.13 - Prob. 1QQCh. 10.13 - For a buffer where the acid and conjugate base are...Ch. 10.14 - Which of the following statements concerning...Ch. 10.14 - In which of the following pairs of compounds are...Ch. 10.14 - Prob. 3QQCh. 10.15 - How many equivalents of Ca2+ ion are present in a...Ch. 10.15 - Prob. 2QQCh. 10.15 - Prob. 3QQCh. 10.15 - Prob. 4QQCh. 10.16 - Determining the concentration of an acid using an...Ch. 10.16 - Prob. 2QQCh. 10.16 - Prob. 3QQCh. 10 - In Arrhenius acidbase theory, what ion is...Ch. 10 - What term is used to describe the formation of...Ch. 10 - Classify each of the following as a property of an...Ch. 10 - Classify each of the following as a property of an...Ch. 10 - Write equations depicting the behavior of the...Ch. 10 - Write equations depicting the behavior of the...Ch. 10 - Indicate whether the first listed reactant in each...Ch. 10 - Indicate whether the first listed reactant in each...Ch. 10 - Write chemical equations that show the indicated...Ch. 10 - Write chemical equations that show the indicated...Ch. 10 - Indicate whether or not the two members of each of...Ch. 10 - Indicate whether or not the two members of each of...Ch. 10 - Write the formula of each of the following. a....Ch. 10 - Write the formula of each of the following. a....Ch. 10 - Identify the conjugate acidbase pairs associated...Ch. 10 - Identify the conjugate acidbase pairs associated...Ch. 10 - The ion HCO3 is an amphiprotic ion. Write the...Ch. 10 - The ion HPO42 is an amphiprotic ion. Write the...Ch. 10 - Classify each of the following acids as...Ch. 10 - Classify each of the following acids as...Ch. 10 - Prob. 10.21EPCh. 10 - For each of the acids in Problem 10-19 indicate...Ch. 10 - Write chemical equations showing the individual...Ch. 10 - Write chemical equations showing the individual...Ch. 10 - Prob. 10.25EPCh. 10 - The formula for tartaric acid is preferably...Ch. 10 - Pyruvic acid, which is produced in metabolic...Ch. 10 - Oxaloacetic acid, which is produced in metabolic...Ch. 10 - Classify each of the acids in Problem 10-19 as a...Ch. 10 - Classify each of the acids in Problem 10-20 as a...Ch. 10 - For each of the following pairs of acids, indicate...Ch. 10 - For each of the following pairs of acids, indicate...Ch. 10 - For each of the following pairings of acid and...Ch. 10 - For each of the following pairings of acid and...Ch. 10 - The HCl in a 0.10 M HCl solution is 100%...Ch. 10 - The HNO3 in a 0.50 M HNO3 solution is 100%...Ch. 10 - The following four diagrams represent aqueous...Ch. 10 - Using the diagrams shown in Problem 10-37, which...Ch. 10 - Which of the terms weak, strong, monoprotic,...Ch. 10 - Which of the terms weak, strong, monoprotic,...Ch. 10 - Write the acid ionization constant expression for...Ch. 10 - Write the acid ionization constant expression for...Ch. 10 - Prob. 10.43EPCh. 10 - Write the base ionization constant expression for...Ch. 10 - Prob. 10.45EPCh. 10 - Using the acid ionization constant information...Ch. 10 - A 0.00300 M solution of an acid is 12% ionized....Ch. 10 - A 0.0500 M solution of a base is 7.5% ionized....Ch. 10 - Is the monoprotic acid Y or the monoprotic acid Z...Ch. 10 - Is the monoprotic acid Y or the monoprotic acid Z...Ch. 10 - Classify each of the following substances as an...Ch. 10 - Classify each of the following substances as an...Ch. 10 - Prob. 10.53EPCh. 10 - Indicate whether or not both members of each of...Ch. 10 - Prob. 10.55EPCh. 10 - Write a balanced equation for the dissociation...Ch. 10 - Indicate whether each of the following reactions...Ch. 10 - Indicate whether each of the following reactions...Ch. 10 - Without writing an equation, specify the molecular...Ch. 10 - Without writing an equation, specify the molecular...Ch. 10 - Write a balanced chemical equation to represent...Ch. 10 - Write a balanced chemical equation to represent...Ch. 10 - Prob. 10.63EPCh. 10 - Write a balanced molecular equation for the...Ch. 10 - Prob. 10.65EPCh. 10 - What is the molar hydronium ion concentration in...Ch. 10 - Indicate whether each of the solutions in Problem...Ch. 10 - Prob. 10.68EPCh. 10 - Prob. 10.69EPCh. 10 - Prob. 10.70EPCh. 10 - Prob. 10.71EPCh. 10 - Indicate whether each of the solutions in Problem...Ch. 10 - Selected information about five solutions, each at...Ch. 10 - Selected information about five solutions, each at...Ch. 10 - Calculate the pH of solutions with the following...Ch. 10 - Calculate the pH of solutions with the following...Ch. 10 - Calculate the pH of solutions with the following...Ch. 10 - Calculate the pH of solutions with the following...Ch. 10 - What is the [H3O+] value in solutions with each of...Ch. 10 - What is the [H3O+] value in solutions with each of...Ch. 10 - Prob. 10.81EPCh. 10 - What is the molar hydronium ion concentration in...Ch. 10 - Prob. 10.83EPCh. 10 - Indicate whether each of the following samples is...Ch. 10 - Selected information about five solutions, each at...Ch. 10 - Prob. 10.86EPCh. 10 - Consider the following four solutions: (1) apple...Ch. 10 - Consider the following four biological solutions:...Ch. 10 - For each of the following pairs of solutions,...Ch. 10 - Prob. 10.90EPCh. 10 - Calculate the pKa value for each of the following...Ch. 10 - Calculate the pKa value for each of the following...Ch. 10 - Acid A has a pKa value of 4.23, and acid B has a...Ch. 10 - Acid A has a pKa value of 5.71, and acid B has a...Ch. 10 - If a weak acid has a pKa value of 8.73, what is...Ch. 10 - If a weak acid has a pKa value of 7.21, what is...Ch. 10 - Classify each of the following salts as a strong...Ch. 10 - Classify each of the following salts as a strong...Ch. 10 - Prob. 10.99EPCh. 10 - Identify the ion (or ions) present in each of the...Ch. 10 - Prob. 10.101EPCh. 10 - Prob. 10.102EPCh. 10 - Both ions in the salt ammonium cyanide (NH4CN)...Ch. 10 - Both ions in the salt ammonium acetate (NH4C2H3O2)...Ch. 10 - Arrange the following 0.10 M aqueous solutions in...Ch. 10 - Arrange the following 0.10 M aqueous solutions in...Ch. 10 - Predict whether each of the following pairs of...Ch. 10 - Predict whether each of the following pairs of...Ch. 10 - Identify the two active species in each of the...Ch. 10 - Identify the two active species in each of the...Ch. 10 - Prob. 10.111EPCh. 10 - Write an equation for each of the following...Ch. 10 - Prob. 10.113EPCh. 10 - Prob. 10.114EPCh. 10 - Prob. 10.115EPCh. 10 - A buffer solution has a pH value of 9.8. Which...Ch. 10 - The following four diagrams represent aqueous...Ch. 10 - Using the diagrams shown in Problem 10-117, which...Ch. 10 - Identify the buffer system(s)the conjugate...Ch. 10 - Identify the buffer system(s)the conjugate...Ch. 10 - Prob. 10.121EPCh. 10 - Prob. 10.122EPCh. 10 - What is the pH of a buffer that is 0.230 M in a...Ch. 10 - What is the pH of a buffer that is 0.250 M in a...Ch. 10 - What is the pH of a buffer that is 0.150 M in a...Ch. 10 - What is the pH of a buffer that is 0.175 M in a...Ch. 10 - Classify each of the following compounds as a...Ch. 10 - Classify each of the following compounds as a...Ch. 10 - Indicate whether solutions of each of the...Ch. 10 - Indicate whether solutions of each of the...Ch. 10 - How many ions, per formula unit, are produced when...Ch. 10 - How many ions, per formula unit, are produced when...Ch. 10 - Write a balanced chemical equation for the...Ch. 10 - Prob. 10.134EPCh. 10 - Four different substances of the generalized...Ch. 10 - Which of the diagrams in Problem 10-135 represents...Ch. 10 - Indicate the number of equivalents in each of the...Ch. 10 - Indicate the number of equivalents in each of the...Ch. 10 - Indicate the number of equivalents in each of the...Ch. 10 - Indicate the number of equivalents in each of the...Ch. 10 - A solution contains 48 mEq of Ca2+ ion. Based on...Ch. 10 - Prob. 10.142EPCh. 10 - Prob. 10.143EPCh. 10 - A solution is 0.0030 M in H2PO4 ion. What is this...Ch. 10 - Prob. 10.145EPCh. 10 - Prob. 10.146EPCh. 10 - How many mEq of HCO3 are present in a solution...Ch. 10 - How many mEq of Ca2+ are present in a solution...Ch. 10 - Determine the molarity of a NaOH solution when...Ch. 10 - Determine the molarity of a KOH solution when each...
Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    General, Organic, and Biological Chemistry
    Chemistry
    ISBN:9781285853918
    Author:H. Stephen Stoker
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY