
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134209586
Author: Hugh D. Young
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.13E
(a)
To determine
The tension on the each part of the cord.
(b)
To determine
The moment of inertia of the pulleys about its rotation axis.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Given water's mass of 18g/mole and the value of the fundamental charge (charge magnitude of the electron and proton), use the largest charge density from the article to determine what fraction of water molecules became ionized (charged) due to triboelectric effects when it flows through the material that causes the largest charge transfer. Give your answer in e/molecule, or electrons transferred per molecule of water. For instance, a value of 0.2 means only one in five molecules of water loses an electron, or that 0.2=20% of water molecules become charged
no AI, please
Sketch the resulting complex wave form, and then say whether it is a periodic or aperiodic wave.
Chapter 10 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Ch. 10.1 - The accompanying figure shows a force P being...Ch. 10.2 - The figure shows a glider of mass m1 that can...Ch. 10.3 - Suppose the solid cylinder used as a yo-yo in...Ch. 10.4 - You apply equal torques to two different...Ch. 10.5 - A ball is attached to one end of a piece of...Ch. 10.6 - If the polar ice caps were to melt completely due...Ch. 10.7 - Suppose the mass of the flywheel in Fig. 10.34 is...Ch. 10 - Can a single force applied to a body change both...Ch. 10 - Suppose you could use wheels of any type in the...Ch. 10 - Serious bicyclists say that if you reduce the...
Ch. 10 - The harder you hit the brakes while driving...Ch. 10 - When an acrobat walks on a tightrope, she extends...Ch. 10 - When you turn on an electric motor, it takes...Ch. 10 - The work done by a force is the product of force...Ch. 10 - A valued client brings a treasured ball to your...Ch. 10 - You make two versions of the same object out of...Ch. 10 - Two identical masses are attached to frictionless...Ch. 10 - The force of gravity acts on the baton in Fig....Ch. 10 - A certain solid uniform bail reaches a maximum...Ch. 10 - A wheel is rolling without slipping on a...Ch. 10 - A hoop, a uniform solid cylinder, a spherical...Ch. 10 - A ball is rolling along al speed without slipping...Ch. 10 - You are standing at the center of a large...Ch. 10 - Global Warming. If the earths climate continues to...Ch. 10 - It two spinning objects have the same angular...Ch. 10 - A student is sitting on a frictionless rotating...Ch. 10 - A point particle travels in a straight line at...Ch. 10 - In Example 10.10 (Section 10.6) the angular speed ...Ch. 10 - In Example 10.10 (Section 10.6) the rotational...Ch. 10 - As discussed in Section 10.6, the angular momentum...Ch. 10 - If you stop a spinning raw egg for the shortest...Ch. 10 - A helicopter has a large main rotor that rotates...Ch. 10 - In a common design for a gyroscope, the flywheel...Ch. 10 - A gyroscope is precessing about a vertical axis....Ch. 10 - A gyroscope takes 3.8 s to precess 1.0 revolution...Ch. 10 - A gyroscope is precessing as in Fig. 10.32. What...Ch. 10 - A bullet spins on its axis as it emerges from a...Ch. 10 - Calculate the torque (magnitude and direction)...Ch. 10 - Calculate the net torque about point O for the two...Ch. 10 - A square metal plate 0.180m on each side is...Ch. 10 - Three forces are applied to a wheel of radius...Ch. 10 - One force acting on a machine part is...Ch. 10 - A metal bar is in the xy-plane with one end of the...Ch. 10 - A machinist is using a wrench lo loosen a nut. The...Ch. 10 - A uniform disk with mass 40.0 kg and radius 0.200...Ch. 10 - The flywheel of an engine has moment of inertia...Ch. 10 - A cord is wrapped around ihe rim of a solid...Ch. 10 - A machine part has the shape of u solid uniform...Ch. 10 - CP A stone is suspended from the free end of a...Ch. 10 - Prob. 10.13ECh. 10 - CP A 15.0-kg bucket of water is suspended by a...Ch. 10 - A wheel rotates without friction about a...Ch. 10 - A 12.0-kg box resting on a horizontal,...Ch. 10 - A 2.20-kg hoop 1.20 m in diameter is rolling to...Ch. 10 - BIO Gymnastics. We can roughly model a gymnastic...Ch. 10 - What fraction of the total kinetic energy is...Ch. 10 - A siring is wrapped several times around the rim...Ch. 10 - A solid ball is released from rest and slides down...Ch. 10 - A hollow, spherical shell with mass 2.00 kg rolls...Ch. 10 - A 392-N wheel comes off a moving truck and rolls...Ch. 10 - A uniform marble rolls down a symmetrical bowl,...Ch. 10 - A thin, light string is wrapped around the outer...Ch. 10 - A Ball Rolling Uphill. A bowling ball rolls...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A playground merry-go-round has radius 2.40 m and...Ch. 10 - An engine delivers 175 hp to an aircraft propeller...Ch. 10 - A 2.80-kg grinding wheel is in the form of a solid...Ch. 10 - An electric motor consumes 9.00 kJ of electrical...Ch. 10 - (a) Compute the torque developed by an industrial...Ch. 10 - An airplane propeller is 2.08 m in length (from...Ch. 10 - A 2.00-kg rock has a horizontal velocity of...Ch. 10 - A woman with mass 50 kg is standing on the rim of...Ch. 10 - Find the magnitude of the angular momentum of the...Ch. 10 - (a) Calculate the magnitude of the angular...Ch. 10 - CALC A hollow, thin-walled sphere of mass 12.0 kg...Ch. 10 - CP A small block on a frictionless, horizontal...Ch. 10 - Prob. 10.41ECh. 10 - A diver comes off a board with arms straight up...Ch. 10 - The Spinning Figure Skater. The outstretched hands...Ch. 10 - A solid wood door 1.00 m wide and 2.00 m high is...Ch. 10 - A large wooden turntable in the shape of a flat...Ch. 10 - Asteroid Collision! Suppose that an asteroid...Ch. 10 - Prob. 10.47ECh. 10 - A thin uniform rod has a length of 0.500 m and is...Ch. 10 - A thin, uniform metal bar. 2.00 m long and...Ch. 10 - A uniform. 4.5-kg, square, solid wooden gate 1.5 m...Ch. 10 - The rotor (flywheel) of a loy gyroscope has mass...Ch. 10 - A Gyroscope on the Moon. A certain gyroscope...Ch. 10 - Stabilization of the Hubble Space Telescope. The...Ch. 10 - A 50.0-kg grindstone is a solid disk 0.520 m in...Ch. 10 - 10.55A grindstone in the shape of a solid disk...Ch. 10 - A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 10 - A thin, uniform. 3.80-kg bar, 80.0 cm long, has...Ch. 10 - You are designing a simple elevator system for an...Ch. 10 - The Atwoods Machine. Figure P10.59 illustrates an...Ch. 10 - The mechanism shown in Fig. P10.60 is used to...Ch. 10 - A large 16.0-kg roll of paper with radius R = 18.0...Ch. 10 - A block with mass m = 5.00 kg slides down a...Ch. 10 - Two metal disks, one with radius R1 = 2.50 cm and...Ch. 10 - A lawn roller in the form of a thin-walled, hollow...Ch. 10 - Two weights are connected by a very light,...Ch. 10 - You complain about fire safety to the landlord of...Ch. 10 - The Yo-yo. A yo-yo is made from two uniform disks,...Ch. 10 - CP A thin-walled, hollow spherical shell of mass m...Ch. 10 - A basketball (which can be closely modeled as a...Ch. 10 - CP A solid uniform ball rolls without slipping up...Ch. 10 - Rolling Stones. A solid, uniform, spherical...Ch. 10 - You are designing a system for moving aluminum...Ch. 10 - A 42.0-cm-diameter wheel, consisting of a rim and...Ch. 10 - A uniform, 0.0300-kg rod of length 0.400 in...Ch. 10 - A uniform solid cylinder with mass M and radius 2R...Ch. 10 - Tarzan and Jane in the 21st Century. Tarzan has...Ch. 10 - A 5.00-kg ball is dropped from a height of 12.0 m...Ch. 10 - The solid wood door of a gymnasium is 1.00 m wide...Ch. 10 - A uniform rod of length L rests on a friction less...Ch. 10 - CP A large turntable with radius 6.00 m rotates...Ch. 10 - In your job as a mechanical engineer you are...Ch. 10 - A local ice hockey team has asked you to design an...Ch. 10 - You are designing a slide for a water park. In a...Ch. 10 - Neutron Star Glitches. Occasionally, a rotating...Ch. 10 - A 500.0-g bird is flying horizontally at 2.25 m/s,...Ch. 10 - CP A small block with mass 0.130 kg is attached to...Ch. 10 - A 55-kg runner runs around the edge of a...Ch. 10 - DATA The V6 engine in a 2014 Chevrolet Silverado...Ch. 10 - DATA You have one object of each of these shapes,...Ch. 10 - DATA You are testing a small flywheel (radius...Ch. 10 - CALC A block with mass m is revolving with linear...Ch. 10 - When an object is rolling without slipping, the...Ch. 10 - A demonstration gyroscope wheel is constructed by...Ch. 10 - The moment of inertia of the empty turntable is...Ch. 10 - While the turntable is being accelerated, the...Ch. 10 - A doubling of the torque produces a greater...Ch. 10 - If the bodys center of mass were not placed on the...
Knowledge Booster
Similar questions
- During a concentric loading of the quadriceps muscle in the upper leg, an athlete extends his lower leg from a vertical position (see figure (a)) to a fully extended horizontal position (see figure (b)) at a constant angular speed of 45.0° per second. Two of the four quadriceps muscles, the vastis intermedius and the rectus femoris, terminate at the patellar tendon which is attached to the top of the tibia in the lower leg. The distance from the point of attachment of the patellar tendon to the rotation axis of the tibia relative to the femur is 4.10 cm in this athlete. a b (a) The two quadriceps muscles can exert a maximum force of 225 N through the patellar tendon. This force is applied at an angle of 25.0° to the section of the tibia between the attachment point and the rotation axis. What is the torque (in N⚫ m) exerted by the muscle on the lower leg during this motion? (Enter the magnitude.) N⚫ m (b) What is the power (in W) generated by the athlete during the motion? W (c)…arrow_forward= A hanging weight, with a mass of m₁ = 0.365 kg, is attached by a rope to a block with mass m₂ 0.835 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R₁ = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As the weight falls, the block slides on the table, and the coefficient of kinetic friction between the block and the table is μk = 0.250. At the instant shown, the block is moving with a velocity of v; = 0.820 m/s toward the pulley. Assume that the pulley is free to spin without friction, that the rope does not stretch and does not slip on the pulley, and that the mass of the rope is negligible. mq R₂ R₁ mi (a) Using energy methods, find the speed of the block (in m/s) after it has moved a distance of 0.700 m away from the initial position shown. m/s (b) What is the angular speed of the pulley (in rad/s) after the block has moved this…arrow_forwardno AI, pleasearrow_forward
- no AI, pleasearrow_forwardno AI, pleasearrow_forwardTwo astronauts, each having a mass of 95.5 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 4.60 m/s. Treating the astronauts as particles, calculate each of the following. CG × d (a) the magnitude of the angular momentum of the system kg m2/s (b) the rotational energy of the system KJ By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? kg m2/s (d) What are their new speeds? m/s (e) What is the new rotational energy of the system? KJ (f) How much work is done by the astronauts in shortening the rope? KJarrow_forward
- A uniform horizontal disk of radius 5.50 m turns without friction at w = 2.55 rev/s on a vertical axis through its center, as in the figure below. A feedback mechanism senses the angular speed of the disk, and a drive motor at A ensures that the angular speed remain constant while a m = 1.20 kg block on top of the disk slides outward in a radial slot. The block starts at the center of the disk at time t = 0 and moves outward with constant speed v = 1.25 cm/s relative to the disk until it reaches the edge at t = 360 s. The sliding block experiences no friction. Its motion is constrained to have constant radial speed by a brake at B, producing tension in a light string tied to the block. (a) Find the torque as a function of time that the drive motor must provide while the block is sliding. Hint: The torque is given by t = 2mrvw. t N.m (b) Find the value of this torque at t = 360 s, just before the sliding block finishes its motion. N.m (c) Find the power which the drive motor must…arrow_forward(a) A planet is in an elliptical orbit around a distant star. At its closest approach, the planet is 0.670 AU from the star and has a speed of 54.0 km/s. When the planet is at its farthest distance from the star of 36.0 AU, what is its speed (in km/s)? (1 AU is the average distance from the Earth to the Sun and is equal to 1.496 × 1011 m. You may assume that other planets and smaller objects in the star system exert negligible forces on the planet.) km/s (b) What If? A comet is in a highly elliptical orbit around the same star. The comet's greatest distance from the star is 25,700 times larger than its closest distance to the star. The comet's speed at its greatest distance is 2.40 x 10-2 km/s. What is the speed (in km/s) of the comet at its closest approach? km/sarrow_forwardYou are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.505 kg and length = 2.70 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Velcro M Incoming Velcro-covered ball m The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.25 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forward
- 56 is not the correct answer!arrow_forward81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B •P x B P'. Figure 29-84 Problem 81. P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forward(λvacuum =640nm) red light (λ vacuum = 640 nm) and green light perpendicularly on a soap film (n=1.31) A mixture of (a vacuum = 512 nm) shines that has air on both side. What is the minimum nonzero thickness of the film, so that destructive interference to look red in reflected light? nm Causes itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning