Both glucose and fructose arc simple sugars with the same molecular formula of C6H12O6. Sucrose (C121122O11), or table sugar, consists of a glucose molecule bonded to a fructose molecule (a water molecule is eliminated in the formation of sucrose), (a) Calculate the energy released when a 2.0-g glucose tablet is burned in air. (b) To what height can a 65-kg person climb after ingesting such a tablet, assuming only 30% of the energy released is available for work. (See the hint for Problem 10.127.) Repeat the calculations for a 2.0-g sucrose tablet.
(a)
Interpretation:
The energy changes in 2.0 g of Glucose and Sucrose tablet has to be calculated and the height the person can climb after ingesting the tablet has to be calculated.
Concept Introduction:
Heat is flow of thermal energy involving two bodies at various temperatures. The flow of thermal energy involving two bodies at various temperatures is called as heat. The flow of heat implies that energy is either released or absorbed on describing about energy changes that takes place during a process.
Exothermic process is the chemical process in which heat is released to the surroundings.
Endothermic process is the chemical process in which heat is absorbed from the surroundings.
The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (
The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.
To calculate: The energy changes for 2 grams of Glucose and Sucrose
Answer to Problem 10.137QP
The heat change for Glucose is
The heat change for Sucrose is
Explanation of Solution
Weight of Glucose =
Molar mass of Glucose =
Heat of combustion of Glucose =
Moles of Glucose =
=
Moles of Sucrose =
Moles of Glucose =
Moles of Sucrose =
To calculate the energy changes for 2 grams of Glucose and Sucrose
Energy change in Glucose =
=
Energy change in Sucrose =
=
Energy change in Glucose =
Energy change in Sucrose =
The energy changes for 2 grams of Glucose and Sucrose were calculated using the values the moles and heat of combustions of Glucose and Sucrose. The energy changes for 2 grams of Glucose and Sucrose were found to be
(b)
Concept Introduction:
The energy possessed by an object due to its relative point to some other object, stress surrounded by itself, its electric charge or any other external factor is called as potential energy.
Potential energy can be calculated using the formula,
Answer to Problem 10.137QP
Height climbed by the person on ingesting Glucose is 15 m.
Height climbed by the person on ingesting Sucrose is 16 m.
Explanation of Solution
To calculate the heat in Joules
Heat of Sucrose = 9.9×103 J
Heat of Glucose = 9.3×103 J
To calculate the height climbed
Height climbed by the person on ingesting Glucose =15 m.
Height climbed by the person on ingesting Sucrose =16 m.
Heights climbed by the person on ingesting Glucose and Sucrose were calculated using the values of mass, acceleration due to gravity and heat. The heights climbed by the person on ingesting Glucose and Sucrose were found to be 15 m and16 m.
Want to see more full solutions like this?
Chapter 10 Solutions
CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
- 3.2 32 Consider calibrating a calorimeter and measuring heat transferred. A sample of compound was burned in a calorimeter and a temperature change of 3.33°C recorded. When a 1.23 A current from a 12.0 V source was passed through a heater in the same calorimeter for 156 s, the temperature changed of 4.47°C was recorded. 3.2.1 Calculate the heat supplied by the heater. 3.2.2 Calculate the calorimeter constant. 3.2.3 Calculate the heat released by the combustion reaction.arrow_forward-.1 Consider the standard enthalpy of formation of gaseous water at 25°C as -241.82 kJ/mol and calculate the standard enthalpy of formation of gaseous water at 100°C.arrow_forward3.5 Complete the following sentences to make correct scientific meaning. 3.5.1 The entropy of a perfect gas. 3.5.2 when it expands isothermally. The change in entropy of a substance accompanying a change of state at its transition 3.5.3 temperature is calculated from its of transition. The increase in entropy when a substance is heated is calculated from itsarrow_forward
- 3.4 Consider the internal energy of a substance 3.4.1 Draw a graph showing the variation of internal energy with temperature at constant volume 3.4.2 Write the mathematical expression for the slope in your graph in 3.4.1arrow_forwardFor a system, the excited state decays to the ground state with a half-life of 15 ns, emitting radiation of 6000 Å. Determine the Einstein coefficients for stimulated absorption and spontaneous emission and the dipole moment of the transition. Data: epsilon 0 = 8.85419x10-12 C2m-1J-1arrow_forwardProblem a. The following compounds have the same molecular formula as benzene. How many monobrominated products could each form? 1. HC =CC=CCH2CH3 2. CH2=CHC = CCH=CH₂ b. How many dibrominated products could each of the preceding compounds form? (Do not include stereoisomers.)arrow_forward
- Don't used Ai solutionarrow_forward4.3 Explain the following terms: 4.3.1 Normal boiling point. 4.3.2 Cooling curve. 4.3.3 Congruent melting. 4.3.4 Ideal solution. 4.3.5 Phase diagram of a pure substance.arrow_forwardFor CO, an electronic transition occurs at 2x1015 Hz. If the dipole moment of the transition is of the order of 1 Debye, calculate:a) The Einstein coefficient of stimulated emissionb) The lifetime of the excited statec) The natural width (in Hz)Data: epsilon 0 = 8.85419x10-12 C2m-1J-1; 1 D = 3.33564x10-30 C m;arrow_forward
- A radiation of intensity l0 = 2.5x1010 photos s-1 cm2 affects a dispersion and produces a transmittance of 0.1122. How much incident radiation is absorbed by the music screen?arrow_forwardIf a radiation intensity l0 = 2.5x1010 fotones s-1 cm2 causes a dissolución and an absorbance of 0.95 will be recorded. How much incident radiation is absorbed by the music screen?arrow_forwardFrom the causes of the detection of a spectral band of a spectrum obtained by a signal in the gaseous phase that is indicated, you can avoid or minimize those that have their origin in:a) the Doppler effectb) collisionsc) the life time of the excited statearrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax