Concept explainers
(a)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.12E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(b)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.12E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the daughter nucleus from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the daughter nucleus from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(c)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.12E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by adding the mass of the captured particle and the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by adding the charge on the emitted particle and the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(d)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.12E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the daughter nucleus from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the daughter nucleus from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(e)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.12E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(f)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.12E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Chemistry For Today: General, Organic, And Biochemistry, 9th + Owlv2 With Mindtap Reader, 1 Term (6 Months) Printed Access Card
- Provide the complete mechanism for the reactions below. You must include appropriate arrows,intermediates, and formal charges.arrow_forwardIndicate the products obtained by reacting fluorobenzene with a sulfonitric mixture.arrow_forwardIf I have 1-bromopropene, to obtain compound A, I have to add NaOH and another compound. Indicate which compound that would be. C6H5 CH3arrow_forward
- If I have 1-bromopropene and I want to obtain (1,1-dipropoxyethyl)benzene, indicate the compound that I should add in addition to NaOH.arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Ο HSCH2CH2CH2SH, BF3 Select to Draw I Submitarrow_forwardFeedback (7/10) Draw the major product of this reaction. Ignore inorganic byproducts. Assume that the water side product is continuously removed to drive the reaction toward products. Incorrect, 3 attempts remaining Ο (CH3CH2)2NH, TSOH Select to Draw V N. 87% Retryarrow_forward
- If I want to obtain (1,1-dipropoxyethyl)benzene from 1-bromopropene, indicate the product that I have to add in addition to NaOH.arrow_forwardIndicate the products obtained when fluorobenzene reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained when chlorobenzene acid reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forward
- Indicate the products obtained by reacting benzenesulfonic acid with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained by reacting ethylbenzene with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained when tert-butylbenzene reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




