
Concept explainers
(a)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(b)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by adding the mass of the captured particle and the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by adding the charge on the emitted particle and the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(c)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the daughter nucleus from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the daughter nucleus from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(d)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(e)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(f)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.

Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the daughter nucleus from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the daughter nucleus from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry for Today: General Organic and Biochemistry
- A covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forward
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




